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Development of a Wearable System to Identify
Movement Intentions by Combining Strain
Gauges and Inertial Measurement Units

Steve Regis Koalaga, Maxime Raison, Sofiane Achiche

Abstract— The combination between surface electromyography
sensors and inertial measurement units is the most common
multimodal sensing method used in body area networks. Nowadays,
this combination is frequently used to identify the intentions of
movement in humans, e.g. to control their prosthesis. However, the
surface electromyography sensors are usually bulky, with electrodes
placed on skin sites, and require a high sampling frequency, usually
1000 Hz, which technically highly reduces the number of sensors that
can be used simultaneously by an onboard microprocessor. Further,
the electromyographic measurement suffers from crosstalk due to
muscles packed side by side. These limitations in electromyography
motivates the search for alternatives using multiple sensors capable of
operating at lower frequencies for everyday applications at an
affordable cost. The objective of this study is to develop a novel
wearable system to identify intentions of movement by combining
strain gauges and inertial measurement units. The system is composed
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Circuit Board

of 1. two bracelets using six strain gauges each, connected to a flexible printed circuit board and 2. two inertial
measurement units. Physiologically, the strain gauges measure the skin deformation due to muscle contraction, while
the inertial measurement units provide complementary data on joint kinematics. The system was tested at the upper
limb, and successfully identified 9 main movements based on the signal intensity of strain gauges. These results show
the great potential of such sensory system to become a smart wearable sensory system to detect human movement

intention.

Index Terms— strain gauges, IMUs, sensor fusion, movement intention, kinesiological tape.

l. INTRODUCTION

A. On the combination of SEMG-IMU to identify
movement intention: context and physiological
justification:

HE combination between surface electromyography

(sEMG) sensors and inertial measurement units (IMU) is
the most common used multimodal sensing method in body
area networks [1].Nowadays, this combination is frequently
utilized to identify the intention of movement in humans, e.g.
for hand and finger gesture recognition [2], or to classify upper
limb phantom movements in transhumeral amputees to control
their prosthesis (e.g. [3], [4]). And the methods for
identification of the intention of movement based on sSEMG and
IMU have the potential to be extended to daily general
applications, such as human computer interfacing [5] [6],
teleoperation of industrial robots [7], etc.
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The combination between sEMG and IMU can be
physiologically justified as a potentially successful avenue,
because:
1)SEMG enable to detect the intention of movement, by
measuring the muscle activity. Therefore, SEMG is still the
main sensor used to control myoelectric prostheses.

2) IMUs provide additional kinematics information about the
motion, i.e., articulation configurations, velocities, and
accelerations. IMUs fills two limitations of sSEMG:
A. sEMG commonly suffers from the limb position effect,
where SEMG signals for the same motion are different in
different limb positions [8], [9]. Therefore, IMUs can be
complementary.
B. IMUs are particularly good for capturing larger motions,
while sSEMG data are better at distinguishing different hand
shapes and finger movements [2].
Adding kinematics feature enabled to increase the accuracy of
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the movement classification by 4.8% [3] on human upper limb
movements. Furthermore, Geng et al. [10] and Fougner et al.
[11] presented a classifier in cascades, which reduced the
average movement classification error from 18% to 5.7%. This
classifier used accelerometry to determine the best limb
position before choosing the SEMG classifier [11].

B. Limitations of SEMG and search for alternative
solutions

sEMG is a technique that uses electrodes placed on the skin
at a specific location to monitor muscle contractions [12]. There
are several drawbacks to using sSEMG [12], [13]. sSEMG can
often be unstable due to sweat, electrode shifts, motion artifacts,
and electronic noise [12], [14]. Also, crosstalk can occur due to
the high number of muscles packed side by side, and muscular
fatigue can crucially affect the quality of the signals [12], [14].
Further, the amount of data coming from SEMG, due to the
acquisitions generally at 1000 Hz, requires high computing
power to process it in real time [15]. Hence, researchers need to
pay attention to these critical issues.

Different sensors have been proposed as alternative solutions
to using SEMG. Indeed, the growing interest in smart wearable
technologies requires the development of new sensors at low
cost, with high sensitivity and low detection limit [16]. Liang
Zou et al. [17] grouped together all tactile sensing systems in
four groups, which are capacitive, piezoresistive, piezoelectric
and optical tactile sensors. The tactile sensing systems are
mostly used in robotics and biomedical engineering. A more
detailed work done by [18], introduced sensor skins defined to
be stretchable planar structures with embedded sensing
components. Sensor skin found in the literature can be grouped
by the type of material (elastomers, woven fabric), the type of
conductor (thin metal films, liquid metal), and the structure they
use (microchannels, mechanical flexible interfaces). Chang et
al. [19] proposed a strain sensor that can still form conformal
contact to the skin even during body movements. They are
prepared by solution coating and consist of two layers, a dry
adhesive layer of biocompatible water-based elastomeric
polyurethane, and a detection layer of a non-adhesive
composite of reduced graphene oxide and carbon nanotubes.
The adhesive layer makes the sensors conform to the skin, while
the sensing layer has sensitive resistance to deformations. Song
et al. [20] presented a strain sensor based on silk graphene
spandex coated fabric (GCSS) prepared by reducing graphene
oxide. The sensor worked thanks to the extension of the
conductive fiber and the deformation of the woven structure.
GCSS was successfully used to detect human movement, by
providing data for gesture recognition based on deep learning.
Yao et al. [21] described the application of capacitive strain
sensors based on silver nanowires for kinematic finger tracking.
The sensors can be attached to the skin to track the movement
of the finger joints with minimal interference with daily
activities. Ali et al. [22], presented a new goniometric glove
using flex sensors to capture the user hand gesture that can be
used to wirelessly control a bionic hand. However, many of
these sensors used a complex fabrication procedure and/or
special materials graphene spandex coated fabric, liquid

gallium, etc. [17],[18], and were limited to finger movements
tracking [19], [20], hence reducing the number of upper limb
movements that could be detected in real applications.

C. Strain gauges as the promising solution

Mori et al. [23] presented a new bioinstrumentation sensor
using one stain gauge for upper limb amputees. Their work
concluded that the repeatability of the strain gauge signal is
superior to myoelectric signal because the sensor measures the
deformation of the skin [23].

Finally, Zizoua et al. [15] presented a proof of concept of a
bracelet using strain gauges for the identification of four upper
limb movements in traumatic amputees: elbow
flexion/extension and forearm pronation/supination. Strain
gauges can measure small deformation of about 10-13pm and
are widely used for their low cost and simple signal
conditioning [15].

Therefore, Zizoua et al. [15] could be a starting reference as
an alternative to EMGs, but this system cannot be used as
proposed to identify three-dimensional movements, because of
four major limitations:

1) Uniaxial skin deformations: the gauges were placed only in
the longitudinal direction of the biceps brachii muscle, which
does not enable to record multi-axial skin deformations.

2) Fragility: the strain gauges were connected by two thin
wires. This enabled a first proof of concept, but was not viable
as it either broke or unsoldered when used several times [15].
3) Non-portability: the system was neither compact nor
portable, which limits its application in everyday life.

4) Lack of conform contact to skin during movement: the strain
gauges were embedded in silicone that did not provide a direct
contact with the skin, thus limiting the ability of the system to
measure the actual skin deformation.

D. Problem, objective, and research hypotheses

Here above, the state-of-art survey revealed two major
problems:

1. The common issues with SEMG were solved by a first
proof of concept of bracelet using strain gauges. But this
one still had limitations: uniaxial skin deformations,
fragility, inaccuracy, and non-portability.

2. The combination between strain gauges and IMUs has
never been investigated to detect human motion intention.

Consequently, the objective of this study is to develop a
wearable system to identify intentions of movement by
combining strain gauges and inertial measurement units.

The main design requirements (DR) of this system are as
follows:

DR 1: The system must be able to measure multi-axial skin

deformations.

DR 2: The system must be able to be used several times in daily

three-dimensional movements.

DR 3: The system must be wearable.

The following research hypothesis (RH) to study can be
formulated: “The combination between strain gauges and IMUs
could enhance the ability to detect motion intention”.
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Il. METHODS

The muscle contractions during a movement create a
deformation of the skin at the surface. Hence, identifying the
muscles involved in the upper limb movement can help to
determine the best sites to measure skin deformations and to
design the strain gauge bracelet accordingly.

A. Design of a strain gauge bracelet

The strain gauge bracelet consisted of six equally spaced (3.5
cm) strain gauges. These gauges were connected by a 0.1 mm
thick flexible printed circuit board (PCB) (see Fig. 1 (a)). In this
flexible PCB, the strain gauges with odd numbers (1, 3 and 5)
were aligned parallel to the longitudinal direction of the biceps
brachii, and the strain gauges with even numbers (2, 4, and 6)
were aligned perpendicularly to the longitudinal direction of the
biceps brachii. This configuration enabled to record the skin
deformations along two different axes.

The gauges were also able to bend in two directions
providing positive (convex deformation) or negative (concave
deformation) voltage variation.

The flexible PCB had a 12-position flat flexible connector
(FFC). This connector was used to connect the strain gauge
bracelet to the acquisition board. The flexible PCB provided a
solid connection with the strain gauges.

Different tests were performed with different types and sizes
of strain gauges. The tests consisted in applying a deformation
to the strain gauges and measuring the signal intensity. The
gauge with the best linear response and high intensity was
chosen, namely the CF120-10AA. The gauge had a linear
pattern and a nominal resistance of 120 ohm + 1% with a gage
factor of 2+ 1%. The gauge was made of constantan alloy and
had a sensitive grid of 10.0 x 4.0 mm. It was able to measure
small strains of about + 5% of the neutral length which was
adequate for our application.

For a better measurement of skin deformation, the gauges,
previously soldered on the flexible PCB, were placed directly
on a kinesiological tape (see Fig. 1 (b)).
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Fig. 1 Strain gauge bracelet. (a) Flexible PCB (yellow) with the
connections for 6 strain gauges. (b) Instrumented kinesiological tape
(blue) the flexible PCB (yellow) connected to the 6 numbered strain
gauges (orange rectangles).

The kinesiological tape was designed to mimic the skin
elastic so you can use your full range of motion [24]. The tape
used a medical-grade adhesive, which was water-resistant and
strong enough to stay on for several days even, while working
out or taking showers [25]. Kinesiological tapes are known as
therapeutic tape that stretched and, strategically applied to the
body to provide support, lessen pain, reduce swelling, and

improve performance [26]. A therapist can let you know how
much stretch is needed for your treatment. In this study, no
stretch was applied to the kinesiological tape, as it was only
used as a bonding interface between the strain gauges matrix
and the skin. This configuration provided better contact with the
skin.

B. The Muscles Involved in Upper Limb Movement

As a proof of concept, one healthy adult subject (male, age:
25 years old, size: 1m70) participated to this study. The
experimental procedure was approved by the Ethic Board of the
Research Center of Ste-Justine University Hospital Center, in
Montreal. The participant provided informed consent before the
experiment and declared being in a good health.

Fig. 2 shows the placement of two bracelets, totalizing 12
strain gauges:

1. Strain gauge bracelet labeled B placed around the arm at
the biceps brachii prominence.

2. Strain gauge bracelet labeled 4B placed around the forearm
5 cm below the elbow joint center; on the forearm and arm.

In this paper, a strain gauge on a bracelet is identified by the

label of the bracelet, i.e., B or AB, followed by the gauge

number from 1 to 6 identified in Fig 1 (b). e.g.: The gauge B6

referrers to strain gauge number 6 on bracelet B.
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Fig. 2 (a) Placement of the two strain gauge bracelets: bracelet B
around the arm, and bracelet AB placed around the forearm; two IMUS:
IMU (1) placed on the hand; IMU (2) placed on the forearm. (b) Anterior
view of the human upper limb. (c) Posterior view of the human upper
limb. The image (b) and (c) were adapted from [27].

In this study, 10 movements of the upper limb (Fig. 3) were
selected. And the muscles responsible for these movements
were identified in Table I.

The biceps brachii, brachialis, and brachioradialis muscles
are responsible for flexing the forearm. The triceps brachii and
anconeus muscles are responsible for extending the forearm.
The gauge B6 was placed on the center on the biceps brachii of
the right arm, and the other gauges of strain gauge bracelet B
were placed going round the arm (X axe of Fig. 2) following
the positive direction of the right-hand rule (B6, B5, B4, B3, B2,
B1).

A supinator is a muscle responsible for rotating the forearm
so that the palm is facing up or forward. A pronator is a muscle
that rotates the arm so that the palm is facing down or toward
the back. The extrinsic muscles of the forearm allow movement
of the wrist and hand. The muscles of the posterior group
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extend the hand to the level of the wrist; the muscles of the

anterior group flex the hand at the wrist
4) l
g
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Fig. 3 The 10 identified movements. (1) Elbow Flexion (EF). (2) Elbow
Extension (EE). (3) Forearm Pronation (FP). (4) Forearm Supination
(FS). (5) Wrist Flexion (WF). (6) Wrist Extension (WE). (7) Wrist Ulnar
Deviation (WL). (8) Wrist Radial Deviation (WR). (9) Power grips (PG).
(10). Rest position “no movement” (NM).

. The gauge AB6 was vertically aligned with B6, and the other
gauges of strain gauge bracelet AB were placed going round the
forearm (X axe of Fig. 2) following the positive direction of the
right-hand rule (AB6, AB5, AB4, AB3, AB2, AB1). The letters
AB were used to identify this bracelet

Table 1 identifies the muscles involved in each movement
and the main sensors that were placed to capture the

movements.
Table |
MUSCLES INVOLVED IN IDENTIFIED UPPER LIMB MOVEMENT.

-strain gauge

PG - extrinsic muscles of hand bracelet (AB)

Hand
movements

Main muscles involved Main sensors

-Biceps brachii
-Triceps brachii
-Brachioradialis
-Brachialis
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-strain gauge
bracelet (B)
-IMU (2)
-Triceps brachii

-Biceps brachii

-Anconeus

Elbow movements
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I1l. CIRCUITS AND SYSTEM

For each stain gauge bracelet, six analog channels were
necessary to record the deformation of the six strain gauges in
real time. For inertial unit-based sensors, six signals were
acquired, namely tree linear accelerations and tree angular
velocities. All sensors had wireless communication.

A. Microcontroller

The microcontroller used for this project was the ESP32. It
has a built-in USB-to-serial converter, lithium ion / polymer
charger, and pretty much all GPIO outputs. In addition, it
enables UART  (Universal Asynchronous Receiver-
Transmitter), SPI (Serial Peripheral Interface), and 12C
communications. The UART protocol was used to establish a
communication between the microcontroller and the computer.
The computer ran a software to save and visualize the incoming
data. The ESP32 has a 240 MHz dual core processor and an
Integrated 520 KB SRAM which can perform the heavy
calculations for onboard real time movement identification. The
12C protocol was used to connect the microcontroller to the
BNOO55 IMU.

The ESP32 supports both WiFi and Bluetooth (Classic / LE),
this means it is suitable to use for wireless projects. It comes
with a proprietary communication protocol ESP-NOW which
enables 2-way wireless communication between several ESP32
boards. This protocol was used as it was easy to implement and
the transmission’s speed was fast enough for our application
(>100 Hz).

B. IMU sensor design

The system used a low-cost commercial sensor (BNOO055)
including an accelerometer, gyroscope, and magnetometer. Fig.
4 shows the wiring diagram.
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-Flexor carpi radialis
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-Flexor digitorum superficialis

-Extensor carpi radialis longus

-Extensor carpi radialis brevis
WE  -Extensor digitorum

-Extensor carpi ulnaris
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bracelet (AB)
-IMU (1)

Wrist movements

WL -Extensor carpi ulnaris
-Abducto Polilicis longus
-Flexor carpi radialis
-Extensor carpi radialis longus
-Extensor carpi radialis brevis

WR

Fig. 3 IMU circuit. BNOO055 at left connected to the ESP32 at right using
the I2C protocol. The image was adapted from [28].

At first, the BNOO55 sensor was connected to the ESP32
using an 12C protocol. It is a serial protocol having a two-wire
interface for connecting low speed devices. BNOO55 has a 3,3V
input which was connected directly into ESP32 3,3Vo. Ground
(GND) pin was connected to GND on ESP32, SCL (12C clock
pin) to ESP32 pin 22 and SDA (I12C data pin) to ESP32 pin 23.
Following this architecture, two sensors using the BNOO055
IMU were implemented.




IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

The code for data acquisition was implemented following the
example provided by Adafruit [28]. For each sensor, a BNO055
object was initialized. Each sensor provided linear accelerations
and angular velocities along the 3 cartesian axes. A specific
identifier was assigned to each sensor as required by the ESP-
NOW protocol.

To ensure that the data coming from the BNOO55 inertial unit
were accurate, it was essential to calibrate the sensors. The
calibration was performed according to the calibration guide
provided by MathWorks [29]. When the calibration process was
completed, the code provided offset values. These offset values
were then applied to each axe of the inertial unit.

A 3D printed PLA box was used to hold all electronic
devices. The ESP32 has support for connecting a LiPoly / Lion
battery. This terminal was connected to a Lipo 850 mAh battery
that allowed the system to have an autonomy of 8 hours. A
velcro was used to strap the sensor on the arm (see Fig. 7 (b)).

C. Strain gauge-based sensor

After determining the electrical components essential for
data acquisition and processing, a PCB (see Fig 6) representing
the electrical circuit (see Fig 5) was designed using KICAD
open access software.

The PCB had a flat flexible cable connector for connecting
the strain gauge bracelet. The PCB included six Wheatstone
bridges in quarter bridge configuration. The bridges converted
small changes in resistance of the gauges to a voltage. The
resistors of this circuit had a nominal resistance value of 120
Ohm with a tolerance of = 1%. Each bridge had a trimmer
potentiometer whose resistance rating is 500 ohms. This
potentiometer had twenty turns allowing to have good precision
(= 1lohm) which facilitated the bridge zeroing. The zeroing
results to a zero-voltage output when no-strain is applied to the
gauge. It is an important step to perform before using the
system. The signal from the gauges was therefore routed to two
multiplexers.

MUX
16x1

MTITITITITTITIT T

ABCO

= MUX
—
- 16x1

Fig. 4 Electrical circuit for strain gauge signal conditioning showing the
Wheatstone bridges in quarter bridge configuration, the multiplexers, the
ADS1256 and the ESP32 microcontroller.

The multiplexers allowed to choose the channel to be read by
sequentially reading each of the analog inputs. The multiplexer
(CD74HC4067) has sixteen channels controlled by 4 digital
signals. The data from sixteen strain gauges can be acquired
using only one input of a microcontroller. This configuration
also allowed the use of a single amplifier and ADC (analog to
digital converter). The size of the acquisition system was thus

reduced. It also saved equipment costs by using a single
amplifier for several gauges.

Fig. 5 PCB for strain gauge signal acquisition. (a) ESP32. (b) FFC/FPC
connector. (c) Wheatstone Bridge. (d) Multiplexers. (e) Power
management. (f) ADS1256.

The analog signals were acquired and processed by the
ADS1256. the ADS1256 is a very low noise 24-bit analog-to-
digital (A/D) converter. It has a high acquisition frequency of
30 kSPS and can acquire data from 8 asymmetric inputs or 4
differential inputs. The programming of this went through the
ESP32 with SPI communication. The ESP32 microcontroller
retrieved the data from the ADS1256 in 24-bit digital format.
The acquired data were sent to the computer by UART
communication. Additionally, a 3,3 V voltage regulator was
added to provide a stable voltage source for the Wheatstone’s
bridges. The stability of the voltage source is important to
ensure the stability of Wheatstone bridges.

This acquisition board was powered by a LiPo (Lithium
Polymer) battery with a capacity of 5000 mAh at 3,7 V and a
power of 18.5 W. This battery allowed the acquisition system
to have an autonomy of 24 hours. A 3D printed PLA box was
used to hold all electronic devices (see Fig. 7(a)).

Fig. 6 3D printed box for electronics. (a) Box (12x10x3.3 cm) containing
the PCB for strain gauge signal conditioning. (b) Box (5.5x3.5x2.2 cm)
containing the IMU circuit and a Velcro strap.

D. Signal Acquisition

The sensors used wireless communication based on the ESP-
NOW protocol. The communication architecture is presented in
Fig. 8. A total of 12 signals from the strain gauges were
recorded for each movement. In addition to these signals, the
triaxial linear accelerations and angular velocities coming from
two IMUs were used. Combining the signals from the strain
gauges and inertial units, a total of 24 signals were obtained.
The data were sampled at a frequency of 100 Hz. The frequency
of 100 Hz was chosen to limit the amount of data to be
processed. Human movement frequency is 0-20 Hz [30]; hence
the theorem of Shannon Nyquist was respected. A Butterworth-
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type digital low-pass filter of order 4 with a cut-off frequency
of 1 Hz was used to filter the signal from the strain gauges. The
first hundred data for each gauge was averaged and used to set
an offset for the following data. The raw signals from IMUs
were used.
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Fig. 7 Communication architecture including the microcontroller, the
communication protocols (ESP-NOW, UART), and the variables
corresponding to the sensors output.

IV. RESULTS

A sequence of movements was established to verify the
system. The sequence was as follows EF-NM-EE-NM-FP-NM-
FS-NM-WF-NM-WE-NM-WL-NM-WR-NM-PG-NM. The
resting position NM was observed between each movement.

Fig. 9 shows the data acquired during the sequence of
movement performed by the subject. Fig 9 (a) shows the 3
linear accelerations and 3 angular velocities coming from IMU
(1) which was placed on the hand. Fig 9 (b) shows the 3 linear
accelerations and 3 angular velocities coming from IMU (2)
which was placed on the forearm. Fig 9 (c) shows the data
acquired by the strain gauge bracelet placed on the arm. Fig 9
(d) shows the data acquired by the strain gauge bracelet placed
on the forearm.

In Table I, the maximum voltage variation for each strain
gauge was computed per movement. The gauges that have
recorded a voltage variation (AV) superior to 1 mV were
identified.

Furthermore, using the information in Table II the maximum
AV in both bending directions were computed per column to
determine which strain gauges recorded more skin deformation
for a particular movement, and per row to determine which
movement produced the maximum AV for each gauge. The
results are displayed in Table III and described here below.

1) Elbow Flexion (EF): The strain gauges that recorded larger
deformations were B6, AB6 and ABI, with 4.5 mV, 6.03 mV,
and 4.48 mV, respectively. Compared to all strain gauges, AB6,
AB3 recorded the greatest deformations for this movement in
both bending directions. Compared to other movements, strain
gauges B6, ABI, AB6 recorded their greatest convex
deformation and B3 recorded its greatest concave deformation.
IMU (1) and IMU (2) recorded similar angular velocities (gz/,
gz2) around the Z-axis

2) Elbow Extension (EE): The strain gauges that recorded larger
deformations were Bl, B5, B6 with -4.11mV, -2.99mV and -

1.98mV, respectively. Compared to all strain gauges, AB6, AB1
recorded the greatest deformations for this movement in the two
bending directions. Compared to other movements, strain
gauges B, B2, B5 recorded their greatest concave deformation.
IMU (1) and IMU (2) recorded similar angular velocities (gz/,
gz2) around the Z-axis.

3) Forearm Pronation (FP): The strain gauges B2, B4 with
1.67mV, 1.04 mV, respectively and 4ABI and AB3 with
1.61 mV, 0.95 mV respectively recorded larger deformations.
Compared to all strain gauges, B2, B3 recorded the greatest
deformations for this movement in both bending directions.
Compared to other movements, strain gauges B2, recorded its
greatest convex deformation. IMU (1) and IMU (2) recorded
similar angular velocities (gx/, gx2) around the X-axis.

4) Forearm Supination (FS): The strain gauges 4B3, AB1, ABG,
AB2, with -1.66mV, 1.30 mV, -1.14mV, 1.02 mV respectively
and B6 with -1.14mV recorded larger deformations. Compared
to all strain gauges, B6, AB3 recorded the greatest deformations
for this movement in both bending directions. None of the
gauges recorded their maximal deformation during forearm
supination. IMU (1) and IMU (2) recorded similar angular
velocities (gx/, gx2) around the X-axis.

5) Wrist Flexion (WF): The strain gauges AB1, AB2 AB5 with
241 mV, 1.36 mV, -1.89mV respectively and B6 with 1.81 mV
recorded larger deformations. Compared to all strain gauges,
ABI, ABS5 recorded the greatest deformations for this movement
in both bending directions. Compared to other movements,
strain gauges ABS recorded its greatest concave deformation
6) Wrist Extension (WE): The strain gauges B4, B6 with
1.34 mv, 1.35 mV, respectively and AB1, AB2, AB3, AB4 with
-3.40mV, 1.55mV, 1.52 mV, 1.06 mV respectively recorded
larger deformations. Compared to all strain gauges, AB2, AB6
recorded the greatest deformations for this movement in both
bending directions. Compared to other movements, strain
gauges B4 recorded its greatest convex deformation. IMU (1)
recorded angular velocities (gy/) around the Y-axis. IMU (2)
placed on the forearm did not record any movement.

7) Wrist Ulnar deviation (WL): The strain gauges B6 with
1.39mV and 4B, AB2 and AB3 with 2.65mV, 1.58 mV,
2.19 mV respectively recorded larger deformations. Compared
all strain gauges, ABI, B3 recorded the greatest deformations
for this movement in both bending directions. Compared to
other movements, strain gauges B1, AB3 recorded their greatest
concave deformations. IMU (1) and IMU (2) recorded similar
angular velocities (gz/, gz2) around the Z-axis.

8) Wrist Radial deviation (WR): The strain gauges B2, B6, with
1.26 mV, 1.02 mV respectively and ABI, AB2, AB4, AB5, AB6
with -4.32mV, 1.67 mV, 1.22 mV and 1.14 mV respectively
recorded larger deformations. Compared to all strain gauges,
AB2, ABI recorded the greatest deformations for this movement
in both bending directions. Compared to other movements,
strain gauges B5, AB4, AB5 recorded their greatest convex
deformation and ABI, AB6 recorded its greatest concave
deformation. IMU (1) and IMU (2) recorded similar angular
velocities (gz/, gz2) around the Z-axis.

9) Power Grips (PG): The strain gauges ABI, AB2, AB3 with
1.71 mV, 1.81 mV and -2.32 mV respectively recorded larger
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Fig. 8 (a) Tri-axial linear acceleration and triaxial angular velocity from the IMU (1) placed on the hand. (b) Tri-axial linear acceleration and triaxial
angular velocity from the IMU (2) placed on the forearm. (c) Data from the six strain gauges in the bracelet placed on the arm (B). (d) Data from the

six strain gauges in the bracelet placed on the forearm (AB)

TABLE II. TABLE IlI.
PEAK SIGNAL INTENSITY FOR EACH STRAIN GAUGE PER MOVEMENT(MV) STRAIN GAUGE SIGNAL INTENSITY PATTERN.

EF EE FP FS WF WE WL WR PG Maximum voltage variation per |Maximum voltage variation
B1 -0.62 -4,11 071 -043 032 032 013 -037 -0.14 strain gauge per movement
B2 1.02 -1.15 1.67 0.72 1.30 094 074 1.26 0.51 (H)ymVmax () mV Min | (+) mV max (-) mV max
B3  -119 098 098 070 -072 069 -0.74 062 -0.63 EF B6, ABL, AB6 B3 AB6 AB3
B4 021 124 109 052 050 134 08 076  0.66 EE ) Béb?i’Bis' AB6 AB1
B5 -1.22 2,99 0.39 036 020 026 044 045 035 FP B2 - B2 B3
B6 4.50 -1.98 085 125 1.81 145 139 102  0.80 FS - - B6 AB3
ABl1 448 1.38 1.61 1.30 2.41 340 265 432 171 WE - AB5 AB1 AB5
AB2 0.82 0.44 0.60 1.01 1.36 1.55 1.58 1.67 1.81 WE B4 - AB2 AB6
AB3  -154 0.76 0.95 -1.66  0.89 152 219 0.85 -2.42 WL B1, AB3 - AB1 B3
AB4  -0.45 -0.95 026 065 046 106 030 122 079 WR B5, AB4, AB5 ABL, AB6 AB2 AB1
AB5  0.65 0.64 0.24 0.59 189 091 035 114 062 PG AB2 AB3 AB2 AB3

AB6  6.03 1.54 0.69 -1.14 -0.88 -0.86 -0.41 -1.32

0.29

deformations. Compared to all strain gauges, AB2, AB3
recorded the greatest deformations for this movement in both
bending directions. Compared to other movements, strain
gauges AB2 recorded its greatest convex deformation and AB3
recorded its greatest concave deformation. IMU (1) recorded
angular velocities (gyl) around the Y-axis. IMU (2) placed on
the forearm didn’t record any movement.

V. DISCUSSION

In this work a new generation of sensor combining strain
gauges and inertial units was presented to identify intentions of
movements of the human upper limb.

A. Movement identification

Table 1 identifies the muscles responsible for each
movement. Fig. 2 shows the placement of the sensors regarding
the muscles involved in the upper limb motion. A link was
established between the movements performed by the subject
(Fig. 3) and the signal recorded by the strain gauges (Fig. 9).
1) Elbow Flexion (EF): The strain gauge B6 was placed on the
biceps brachii which explains the high intensity signal (Fig. 9).
By going around the arm with the strain gauge bracelet (4B),
AB1 and AB6 were placed near the brachioradialis, which
explains the deformation obtained. However, the gauge B6 was
expected to record more deformation as the biceps brachii is the
main muscle responsible of the flexion of the forearm.
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2) Elbow Extension (EE): The strain gauges Bl and B6 were
placed on the biceps brachii which relaxes during the elbow
extension. It is therefore normal to record deformations in the
opposite direction to the bending movement for gauges B6 and
BI(Fig. 9(c)). The signal of B6 went from positive for elbow
flexion to negative for elbow extension. The strain gauge B5
was placed closed to the Brachialis which also relaxes during
elbow extension. The gauges AB/ and AB6 were placed near
the Brachioradialis and recorded deformations. These
measurements can be explained by the nature of the extension
movement which tends to stretch the skin of the forearm at full
range of motion.
3) Forearm Pronation (FP): The strain gauges 4ABI and AB3
were placed around the pronator teres which is mainly
responsible for the pronation of the forearm. It is therefore
normal that 4ABI and AB3 recorded signals with high intensity.
The biceps brachii is partly involved in the pronation
movement of the forearm. The movement of the biceps creates
large deformation of the skin around the arm which matches the
high intensity signals recorded by strain gauges B2 and B4.
4) Forearm Supination (FS): The strain gauges ABI, AB2 and
AB3 were located around the supinator which is responsible for
the supine movement of the forearm. The strain gauges AB/ and
AB3 were involved in both pronation, and supination. B6 is
centered on the biceps brachii which is involved in this
movement. The forearm pronation and supination movement
are like a twisting movement which causes the skin of the
forearm to stretch, it is normal that most of the strain gauges of
the bracelet placed on the forearm recorded deformations.
Most of the muscles involved in the subsequent movements
are in the forearm. Hence, the gauges of the bracelet(B) placed
on the arm recorded decreasingly weak signals (Fig. 9 (c)). The
muscles in the forearm are packed side by side or overlapped so
it was more difficult to make a link between the muscles
involved in the movement and the placement of the strain
gauges.
5) Wrist Flexion (WF): The strain gauges ABI, AB2, AB5 were
found close to the muscle group involved in the flexion
movement of the wrist. The gauge 4B/ gauge is centered on the
flexor carpi radialis which explains a stronger signal.
6) Wrist Extension (WE): The strain gauges ABI, AB2, AB3,
AB4 were found near the muscles involved in the extension
movement of the wrist. AB! is near the extensor carpi ulnaris,
and the digitorum extender which explains a stronger signal.
7) Wrist Ulnar deviation (WL): The muscles responsible for the
ulnar deviation of the wrist is the extensor Carpi ulnaris. The
strain gauges AB1 and 4B3 were placed near this muscle, which
explains the signals recorded.
8) Wrist Radial deviation (WR): The muscles responsible for
the radial deviation of the wrist are the flexor carpi radialis,
extensor carpi radialis longus, extensor carpi radialis Brevis.
This group of muscles goes almost all around the forearm,
which explains the deformations recorded by most of the
gauges of the strain gauge bracelet placed on the forearm.
9) Power Grips (PG): The gripping movement mainly involves
the extrinsic and intrinsic muscles of the hand. Certain muscles
ofthe forearm (e.g., flexor digitorum superficialis) are involved
in power grips which explains the signals recorded by strain
gauges ABI, AB2, and AB3.

Data from IMUs (Fig 9 (a), (b)) provided additional
information about the motion. Although it was difficult to have
a visual interpretation of the linear acceleration’s data, the
angular velocities provided information used to derive a
relation between the graphs obtained and the movements.

For the movements of EF, EE, FP and FS it was expected to
register similar signals of linear acceleration and angular
velocities from the two IMUSs. Indeed, for these movements the
IMUs were aligned along the same axes and the wrist remained
fixed which simulates two IMUs placed on a rigid bar. The
observations of the graphs confirmed our assertion.

The movements of WF, WE, WR, WL showed a quasi-static
angular acceleration for the IMU placed on the forearm (Fig. 9
(b)). Indeed, only the wrist performs these movements, so it is
normal to record accelerations only from the IMU (1) placed on
the hand. The gripping movement consisted of opening and
closing the hand, so no acceleration nor velocities should be
recorded by the IMUs. However, humans can hardly maintain
a perfect static position, hence the observation of slight
accelerations was normal (Fig. 9(a), (b)).

The results showed that the strain gauge bracelet placed on
the forearm recorded signals that can distinguish between
different wrist movements and the power grips movement. The
strain gauge bracelet placed on the arm recorded signals that
can distinguish between forearm movements. Also, the
combination of strain gauges that recorded maximum AV is
unique for each movement (see Table III). This uniqueness
represents a pattern to identify upper limb movement.

Referring to Table I1I, it is worth noting that:

1) There was no strain gauge which measured its greatest
deformation for forearm supination. Hence, no strain gauge
was optimally placed to detect forearm supination.

2) The strain gauge AB6 recorded its maximum AV and
recorded more signal for e/bow flexion compared to other strain
gauges. This strain gauge is a good discriminant for this e/bow
flexion.

3) The strain gauge B2 recorded its maximum AV and recorded
more signal for forearm pronation compared to other strain
gauges. This strain gauge is a good discriminant for forearm
pronation.

4)The strain gauge AB5 recorded its maximum AV and
recorded more signal for wrist flexion compared to other strain
gauges. This strain gauge is a good discriminant for wrist
flexion.

5) The strain gauge AB1 recorded is maximum AV and recorded
more signal for wrist radial deviation compared to other strain
gauges. This strain gauge is a good discriminant for this wrist
radial deviation.

6) The strain gauges AB2 and AB3 recorded their maximum AV
and recorded more signal for power grasp compared to other
strain gauges. These gauges are good discriminants for power
grasp.

The impacts of adding IMUs to the system are as follows:

1) The angular velocities helped to identify the end and
beginning of each movement in the sequence.

2) The position of the limb could be inferred using angular
velocities.
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3) The linear acceleration contribution is unclear at this point.
However, further analysis using different techniques could
provide more information regarding the kinematics data.

The strain gauges provided information about muscle
contraction and the IMUs provided information about the
motion. The preliminary results obtained proved the capability
of this sensor to record signals making it possible to distinguish
9 movements of the upper [RH].

B. Sensor design:

Moreover, the proposed system was compact and portable
making ideal for daily activities (Fig. 7 (a), (b)). The strain
gauge bracelet used strain gauge and kinesiological tape which
are commercially available. The IMU (1) placed on the hand
was not optimal regarding its size. However, sensor of smaller
size can solve this issue.

Each strain gauge in the matrix collected a specific signal.
The third and fourth maximum AV (see Table II) were recorded
by gauges B1(4.48 mV) and AB1(-4.11mV) which were placed
horizontally (Fig. 1). Aligning the strain gauges in the direction
of the greatest strain [15] was not optimal since the sensor did
not record the deformation about the other axis. This
information can be very useful for a future classification
algorithm to distinguish between different movements.
Measuring strain on multiple axes is therefore important to
better capture skin deformation due to muscle activity [DR1].

The new flexible PCB-based strain gauge matrix fabrication
method was systematic, so the shape, size and orientation of the
gauges can be changed depending on the application. Different
strain gauge matrices can be made using flexible PCBs and
placed in different sites on the human body to collect different
information [DR3]. This technique also provided a good solid
connection with the gauges that prevented the connections to
break or unsolder during movements [DR2] as a solution to the
robustness issues noted in [15].

The number of strain gauges, their orientations as well as the
position of the strain gauge bracelet are important factors that
can be optimized by referring to basic knowledge of human
anatomy. This knowledge does not need to be specific as it is in
the case of SEMG which requires the sensors to be placed on
the right muscle to detect the right signal [12]. The system had
12 channels of strain gauges, and more strain gauges can be
added if necessary. It is nearly impossible/or too bulky to place
the same number of sSEMG electrodes on a person without
interfering with his daily activities. Also, the frequency of data
acquisition of the proposed system was customizable between
40 Hz to 200 Hz which is far less than sEMG sampling
frequency (1000 Hz)[14]. A technical limitation related to the
use of Wheatstone bridge was the need to recalibrate each
bridge after certain amount of use. A subsequent work can
investigate that issue.

VI. CONCLUSION

The objective of this research was to develop a novel
wearable system to identify intentions of movement by
combining strain gauges and inertial measurement units. The
proposed system is composed of 1. two strain gauge bracelets
using 6 strain gauges each, connected to a flexible printed
circuit board and 2. two inertial measurement units. The system

was tested on the upper limb, and successfully identified 9 main
movements through the variations in signal intensity of the
strain gauges. However, the data collected was rich in
information and a machine learning or deep learning algorithm
could better capture the underlying patterns of each movement.
These results show the potential of such sensory system to
become a smart wearable sensory system to detect human
movement intention. The future perspectives will be to extend
the system, e.g., to the lower limbs, and to identify complex

movement combinations by using pattern recognition
algorithms with such sensory system.
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