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Abstract— The combination between surface electromyography 
sensors and inertial measurement units is the most common 
multimodal sensing method used in body area networks. Nowadays, 
this combination is frequently used to identify the intentions of 
movement in humans, e.g. to control their prosthesis. However, the 
surface electromyography sensors are usually bulky, with electrodes 
placed on skin sites, and require a high sampling frequency, usually 
1000 Hz, which technically highly reduces the number of sensors that 
can be used simultaneously by an onboard microprocessor. Further, 
the electromyographic measurement suffers from crosstalk due to 
muscles packed side by side. These limitations in electromyography 
motivates the search for alternatives using multiple sensors capable of 
operating at lower frequencies for everyday applications at an 
affordable cost. The objective of this study is to develop a novel 
wearable system to identify intentions of movement by combining 
strain gauges and inertial measurement units. The system is composed 
of 1. two bracelets using six strain gauges each, connected to a flexible printed circuit board and 2. two inertial 
measurement units. Physiologically, the strain gauges measure the skin deformation due to muscle contraction, while 
the inertial measurement units provide complementary data on joint kinematics. The system was tested at the upper 
limb, and successfully identified 9 main movements based on the signal intensity of strain gauges. These results show 
the great potential of such sensory system to become a smart wearable sensory system to detect human movement 
intention.  

 
Index Terms— strain gauges, IMUs, sensor fusion, movement intention, kinesiological tape. 

 

I.  INTRODUCTION 

A. On the combination of sEMG-IMU to identify 
movement intention: context and physiological 
justification: 

HE combination between surface electromyography 

(sEMG) sensors and inertial measurement units (IMU) is 

the most common used multimodal sensing method in body 

area networks [1].Nowadays, this combination is frequently 

utilized to identify the intention of movement in humans, e.g. 

for hand and finger gesture recognition [2], or to classify upper 

limb phantom movements in transhumeral amputees to control 

their prosthesis (e.g. [3], [4]). And the methods for 

identification of the intention of movement based on sEMG and 

IMU have the potential to be extended to daily general 

applications, such as human computer interfacing [5] [6], 

teleoperation of industrial robots [7], etc.  

 
S.R. Koalaga is with the Mechanical Engineering Department, 

Polytechnique de Montréal, Montreal QC H3T 1J4, Canada, and also 
with MARIE ENFANT Rehabilitation Centre, CHU Sainte-Justine, 
Montreal, QC H1T 1C9, Canada  
(e-mail: steve-regis.koalaga@polymtl.ca). 

M. Raison is with the Mechanical Engineering Department, 
Polytechnique de Montréal, Montreal, QC H3T 1J4, Canada, and also  

The combination between sEMG and IMU can be 

physiologically justified as a potentially successful avenue, 

because:  

1) sEMG enable to detect the intention of movement, by 

measuring the muscle activity. Therefore, sEMG is still the 

main sensor used to control myoelectric prostheses.  

2) IMUs provide additional kinematics information about the 

motion, i.e., articulation configurations, velocities, and 

accelerations. IMUs fills two limitations of sEMG:  

A. sEMG commonly suffers from the limb position effect, 

where sEMG signals for the same motion are different in  

different limb positions [8], [9]. Therefore, IMUs can be 

complementary.  

B. IMUs are particularly good for capturing larger motions, 

while sEMG data are better at distinguishing different hand 

shapes and finger movements  [2]. 

Adding kinematics feature enabled to increase the accuracy of 
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the movement classification by 4.8% [3] on human upper limb 

movements. Furthermore, Geng et al. [10] and Fougner et al. 

[11] presented a classifier in cascades, which reduced the 

average movement classification error from 18% to 5.7%. This 

classifier used accelerometry to determine the best limb 

position before choosing the sEMG classifier [11].  

B. Limitations of sEMG and search for alternative 
solutions 

sEMG is a technique that uses electrodes placed on the skin 

at a specific location to monitor muscle contractions [12]. There 

are several drawbacks to using sEMG [12], [13]. sEMG can 

often be unstable due to sweat, electrode shifts, motion artifacts, 

and electronic noise [12], [14]. Also, crosstalk can occur due to 

the high number of muscles packed side by side, and muscular 

fatigue can crucially affect the quality of the signals [12], [14]. 

Further, the amount of data coming from sEMG, due to the  

acquisitions generally at 1000 Hz, requires high computing 

power to process it in real time [15]. Hence, researchers need to 

pay attention to these critical issues. 

Different sensors have been proposed as alternative solutions 

to using sEMG. Indeed, the growing interest in smart wearable 

technologies requires the development of new sensors at low 

cost, with high sensitivity and low detection limit [16]. Liang 

Zou et al. [17] grouped together all tactile sensing systems in 

four groups, which are capacitive, piezoresistive, piezoelectric 

and optical tactile sensors. The tactile sensing systems are 

mostly used in robotics and biomedical engineering. A more 

detailed work done by [18], introduced sensor skins defined to 

be stretchable planar structures with embedded sensing 

components. Sensor skin found in the literature can be grouped 

by the type of material (elastomers, woven fabric), the type of 

conductor (thin metal films, liquid metal), and the structure they 

use (microchannels, mechanical flexible interfaces). Chang et 

al. [19] proposed a strain sensor that can still form conformal 

contact to the skin even during body movements. They are 

prepared by solution coating and consist of two layers, a dry 

adhesive layer of biocompatible water-based elastomeric 

polyurethane, and a detection layer of a non-adhesive 

composite of reduced graphene oxide and carbon nanotubes. 

The adhesive layer makes the sensors conform to the skin, while 

the sensing layer has sensitive resistance to deformations. Song 

et al. [20] presented a strain sensor based on silk graphene 

spandex coated fabric (GCSS) prepared by reducing graphene 

oxide. The sensor worked thanks to the extension of the 

conductive fiber and the deformation of the woven structure. 

GCSS was successfully used to detect human movement, by 

providing data for gesture recognition based on deep learning. 

Yao et al. [21] described the application of capacitive strain 

sensors based on silver nanowires for kinematic finger tracking. 

The sensors can be attached to the skin to track the movement 

of the finger joints with minimal interference with daily 

activities. Ali et al. [22], presented a new goniometric glove 

using flex sensors to capture the user hand gesture that can be 

used to wirelessly control a bionic hand. However, many of 

these sensors used a complex fabrication procedure and/or 

special materials graphene spandex coated fabric, liquid 

gallium, etc. [17],[18], and were limited to finger movements 

tracking [19], [20], hence reducing the number of upper limb 

movements that could be detected in real applications. 

C. Strain gauges as the promising solution 

Mori et al. [23] presented a new bioinstrumentation sensor 

using one stain gauge for upper limb amputees. Their work 

concluded that the repeatability of the strain gauge signal is 

superior to myoelectric signal because the sensor measures the 

deformation of the skin [23].   

Finally, Zizoua et al. [15] presented a proof of concept of a 

bracelet using strain gauges for the identification of four upper 

limb movements in traumatic amputees: elbow 

flexion/extension and forearm pronation/supination. Strain 

gauges can measure small deformation of about 10-13µm and 

are widely used for their low cost and simple signal 

conditioning [15].  

Therefore, Zizoua et al. [15] could be a starting reference as 

an alternative to EMGs, but this system cannot be used as 

proposed to identify three-dimensional movements, because of 

four major limitations:  

1) Uniaxial skin deformations: the gauges were placed only in 

the longitudinal direction of the biceps brachii muscle, which 

does not enable to record multi-axial skin deformations.  

2) Fragility: the strain gauges were connected by two thin 

wires. This enabled a first proof of concept, but was not viable 

as it either broke or unsoldered when used several times [15]. 

3) Non-portability: the system was neither compact nor 

portable, which limits its application in everyday life.  

4) Lack of conform contact to skin during movement: the strain 

gauges were embedded in silicone that did not provide a direct 

contact with the skin, thus limiting the ability of the system to 

measure the actual skin deformation. 

D. Problem, objective, and research hypotheses 

Here above, the state-of-art survey revealed two major 

problems: 

1. The common issues with sEMG were solved by a first 

proof of concept of bracelet using strain gauges. But this 

one still had limitations: uniaxial skin deformations, 

fragility, inaccuracy, and non-portability. 

2. The combination between strain gauges and IMUs has 

never been investigated to detect human motion intention.  

Consequently, the objective of this study is to develop a 

wearable system to identify intentions of movement by 

combining strain gauges and inertial measurement units.  

The main design requirements (DR) of this system are as 

follows: 

DR 1: The system must be able to measure multi-axial skin 

deformations. 

DR 2: The system must be able to be used several times in daily 

three-dimensional movements. 

DR 3: The system must be wearable.   

The following research hypothesis (RH) to study can be 

formulated: “The combination between strain gauges and IMUs 

could enhance the ability to detect motion intention”.  
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II. METHODS 

The muscle contractions during a movement create a 

deformation of the skin at the surface. Hence, identifying the 

muscles involved in the upper limb movement can help to 

determine the best sites to measure skin deformations and to 

design the strain gauge bracelet accordingly. 

A. Design of a strain gauge bracelet 

The strain gauge bracelet consisted of six equally spaced (3.5 

cm) strain gauges. These gauges were connected by a 0.1 mm 

thick flexible printed circuit board (PCB) (see Fig. 1 (a)). In this 

flexible PCB, the strain gauges with odd numbers (1, 3 and 5) 

were aligned parallel to the longitudinal direction of the biceps 

brachii, and the strain gauges with even numbers (2, 4, and 6) 

were aligned perpendicularly to the longitudinal direction of the 

biceps brachii. This configuration enabled to record the skin 

deformations along two different axes.  

The gauges were also able to bend in two directions 

providing positive (convex deformation) or negative (concave 

deformation) voltage variation. 

The flexible PCB had a 12-position flat flexible connector 

(FFC). This connector was used to connect the strain gauge 

bracelet to the acquisition board. The flexible PCB provided a 

solid connection with the strain gauges.  

Different tests were performed with different types and sizes 

of strain gauges. The tests consisted in applying a deformation 

to the strain gauges and measuring the signal intensity. The 

gauge with the best linear response and high intensity was 

chosen, namely the CF120-10AA. The gauge had a linear 

pattern and a nominal resistance of 120 ohm ± 1% with a gage 

factor of 2± 1%. The gauge was made of constantan alloy and 

had a sensitive grid of 10.0 x 4.0 mm. It was able to measure 

small strains of about ± 5% of the neutral length which was 

adequate for our application.  

For a better measurement of skin deformation, the gauges, 

previously soldered on the flexible PCB, were placed directly 

on a kinesiological tape (see Fig. 1 (b)).  

 
Fig. 1  Strain gauge bracelet. (a) Flexible PCB (yellow) with the 
connections for 6 strain gauges. (b) Instrumented kinesiological tape 
(blue) the flexible PCB (yellow) connected to the 6 numbered strain 
gauges (orange rectangles).  

 

The kinesiological tape was designed to mimic the skin 

elastic so you can use your full range of motion [24]. The tape 

used a medical-grade adhesive, which was water-resistant and 

strong enough to stay on for several days even, while working 

out or taking showers [25]. Kinesiological tapes are known as 

therapeutic tape that stretched and, strategically applied to the 

body to provide support, lessen pain, reduce swelling, and 

improve performance [26]. A therapist can let you know how 

much stretch is needed for your treatment. In this study, no 

stretch was applied to the kinesiological tape, as it was only 

used as a bonding interface between the strain gauges matrix 

and the skin. This configuration provided better contact with the 

skin.  

B. The Muscles Involved in Upper Limb Movement 

As a proof of concept, one healthy adult subject (male, age: 

25 years old, size: 1m70) participated to this study. The 

experimental procedure was approved by the Ethic Board of the 

Research Center of Ste-Justine University Hospital Center, in 

Montreal. The participant provided informed consent before the 

experiment and declared being in a good health.  

Fig. 2 shows the placement of two bracelets, totalizing 12 

strain gauges: 

1. Strain gauge bracelet labeled B placed around the arm at 

the biceps brachii prominence. 

2. Strain gauge bracelet labeled AB placed around the forearm 

5 cm below the elbow joint center; on the forearm and arm. 

In this paper, a strain gauge on a bracelet is identified by the 

label of the bracelet, i.e., B or AB, followed by the gauge 

number from 1 to 6 identified in Fig 1 (b). e.g.: The gauge B6 

referrers to strain gauge number 6 on bracelet B. 

 

 
 
Fig. 2  (a) Placement of the two strain gauge bracelets: bracelet B 
around the arm, and bracelet AB placed around the forearm; two IMUS: 
IMU (1) placed on the hand; IMU (2) placed on the forearm. (b) Anterior 
view of the human upper limb. (c) Posterior view of the human upper 
limb. The image (b) and (c) were adapted from [27]. 

 

In this study, 10 movements of the upper limb (Fig. 3) were 

selected. And the muscles responsible for these movements 

were identified in Table I.  

The biceps brachii, brachialis, and brachioradialis muscles 

are responsible for flexing the forearm. The triceps brachii and 

anconeus muscles are responsible for extending the forearm. 

The gauge B6 was placed on the center on the biceps brachii of 

the right arm, and the other gauges of strain gauge bracelet B 

were placed going round the arm (X axe of Fig. 2) following 

the positive direction of the right-hand rule (B6, B5, B4, B3, B2, 

B1).  

A supinator is a muscle responsible for rotating the forearm 

so that the palm is facing up or forward. A pronator is a muscle 

that rotates the arm so that the palm is facing down or toward 

the back. The extrinsic muscles of the forearm allow movement 

of the wrist and hand. The muscles of the posterior group 
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extend the hand to the level of the wrist; the muscles of the 

anterior group flex the hand at the wrist 

 
Fig. 3  The 10 identified movements. (1) Elbow Flexion (EF). (2) Elbow 
Extension (EE). (3) Forearm Pronation (FP). (4) Forearm Supination 
(FS). (5) Wrist Flexion (WF). (6) Wrist Extension (WE). (7) Wrist Ulnar 
Deviation (WL). (8) Wrist Radial Deviation (WR). (9) Power grips (PG). 
(10). Rest position “no movement” (NM).  

 

. The gauge AB6 was vertically aligned with B6, and the other 

gauges of strain gauge bracelet AB were placed going round the 

forearm (X axe of Fig. 2) following the positive direction of the 

right-hand rule (AB6, AB5, AB4, AB3, AB2, AB1). The letters 

AB were used to identify this bracelet 

  Table I identifies the muscles involved in each movement 

and the main sensors that were placed to capture the 

movements.  
Table I 

MUSCLES INVOLVED IN IDENTIFIED UPPER LIMB MOVEMENT. 
  Main muscles involved Main sensors 

E
lb

o
w

 m
o
v
em

en
ts

 

EF 

-Biceps brachii 
-Triceps brachii 

-Brachioradialis 

-Brachialis 

 

-strain gauge 

bracelet (B) 

-IMU (2) 

 
EE 

-Triceps brachii 
-Biceps brachii 

-Anconeus 

F
o
re

ar
m

 
m

o
v
em

en
ts

 

FP 

-Pronator teres 

-Pronator quadratus  

-Supinator 
-Biceps brachii 

 

-strain gauge 

bracelet (AB) 

-IMU (1) 

FS 

-Supinator 

-Pronator Teres 

-Pronator quadratus 

W
ri

st
 m

o
v
em

en
ts

 

WF 

-Flexor carpi radialis 

-Flexor carpi ulnaris 

-Flexor digitorum superficialis 

 

-strain gauge 

bracelet (AB) 
-IMU (1) 

 

WE 

-Extensor carpi radialis longus 
-Extensor carpi radialis brevis 

-Extensor digitorum 

-Extensor carpi ulnaris 

 

WL 
-Extensor carpi ulnaris 
 

WR 

-Abducto Polilicis longus 

-Flexor carpi radialis 

-Extensor carpi radialis longus 

-Extensor carpi radialis brevis 

H
an

d
 

m
o
v
em

en
ts

 

PG - extrinsic muscles of hand 
-strain gauge 
bracelet (AB) 

 

III. CIRCUITS AND SYSTEM 

For each stain gauge bracelet, six analog channels were 

necessary to record the deformation of the six strain gauges in 

real time. For inertial unit-based sensors, six signals were 

acquired, namely tree linear accelerations and tree angular 

velocities. All sensors had wireless communication. 

A. Microcontroller 

The microcontroller used for this project was the ESP32. It 

has a built-in USB-to-serial converter, lithium ion / polymer 

charger, and pretty much all GPIO outputs. In addition, it 

enables UART (Universal Asynchronous Receiver-

Transmitter), SPI (Serial Peripheral Interface), and I2C 

communications. The UART protocol was used to establish a 

communication between the microcontroller and the computer. 

The computer ran a software to save and visualize the incoming 

data. The ESP32 has a 240 MHz dual core processor and an 

Integrated 520 KB SRAM which can perform the heavy 

calculations for onboard real time movement identification. The 

I2C protocol was used to connect the microcontroller to the 

BNO055 IMU. 

The ESP32 supports both WiFi and Bluetooth (Classic / LE), 

this means it is suitable to use for wireless projects. It comes 

with a proprietary communication protocol ESP-NOW which 

enables 2-way wireless communication between several ESP32 

boards. This protocol was used as it was easy to implement and 

the transmission’s speed was fast enough for our application 

(>100 Hz).   

B. IMU sensor design 

The system used a low-cost commercial sensor (BNO055) 

including an accelerometer, gyroscope, and magnetometer. Fig. 

4 shows the wiring diagram. 

 

 
Fig. 3  IMU circuit. BNO055 at left connected to the ESP32 at right using 
the I2C protocol. The image was adapted from [28]. 

 

At first, the BNO055 sensor was connected to the ESP32 

using an I2C protocol. It is a serial protocol having a two-wire 

interface for connecting low speed devices. BNO055 has a 3,3V 

input which was connected directly into ESP32 3,3Vo. Ground 

(GND) pin was connected to GND on ESP32, SCL (I2C clock 

pin) to ESP32 pin 22 and SDA (I2C data pin) to ESP32 pin 23. 

Following this architecture, two sensors using the BNO055 

IMU were implemented. 
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The code for data acquisition was implemented following the 

example provided by Adafruit [28]. For each sensor, a BNO055 

object was initialized. Each sensor provided linear accelerations 

and angular velocities along the 3 cartesian axes. A specific 

identifier was assigned to each sensor as required by the ESP-

NOW protocol.  

To ensure that the data coming from the BNO055 inertial unit 

were accurate, it was essential to calibrate the sensors. The 

calibration was performed according to the calibration guide 

provided by MathWorks [29]. When the calibration process was 

completed, the code provided offset values.  These offset values 

were then applied to each axe of the inertial unit.  

A 3D printed PLA box was used to hold all electronic 

devices. The ESP32 has support for connecting a LiPoly / Lion 

battery. This terminal was connected to a Lipo 850 mAh battery 

that allowed the system to have an autonomy of 8 hours. A 

velcro was used to strap the sensor on the arm (see Fig. 7 (b)). 

C. Strain gauge-based sensor 

After determining the electrical components essential for 

data acquisition and processing, a PCB (see Fig 6) representing 

the electrical circuit (see Fig 5) was designed using KICAD 

open access software. 

The PCB had a flat flexible cable connector for connecting 

the strain gauge bracelet. The PCB included six Wheatstone 

bridges in quarter bridge configuration. The bridges converted 

small changes in resistance of the gauges to a voltage. The 

resistors of this circuit had a nominal resistance value of 120 

Ohm with a tolerance of ± 1%. Each bridge had a trimmer 

potentiometer whose resistance rating is 500 ohms. This 

potentiometer had twenty turns allowing to have good precision 

(± 1ohm) which facilitated the bridge zeroing. The zeroing 

results to a zero-voltage output when no-strain is applied to the 

gauge. It is an important step to perform before using the 

system. The signal from the gauges was therefore routed to two 

multiplexers. 

 
Fig. 4  Electrical circuit for strain gauge signal conditioning showing the 
Wheatstone bridges in quarter bridge configuration, the multiplexers, the 
ADS1256 and the ESP32 microcontroller. 

 

The multiplexers allowed to choose the channel to be read by 

sequentially reading each of the analog inputs. The multiplexer 

(CD74HC4067) has sixteen channels controlled by 4 digital 

signals. The data from sixteen strain gauges can be acquired 

using only one input of a microcontroller. This configuration 

also allowed the use of a single amplifier and ADC (analog to 

digital converter). The size of the acquisition system was thus 

reduced. It also saved equipment costs by using a single 

amplifier for several gauges.  

 

 
Fig. 5  PCB for strain gauge signal acquisition. (a) ESP32. (b) FFC/FPC 
connector. (c) Wheatstone Bridge. (d) Multiplexers. (e) Power 
management. (f) ADS1256.  

 

 The analog signals were acquired and processed by the 

ADS1256. the ADS1256 is a very low noise 24-bit analog-to-

digital (A/D) converter. It has a high acquisition frequency of 

30 kSPS and can acquire data from 8 asymmetric inputs or 4 

differential inputs. The programming of this went through the 

ESP32 with SPI communication. The ESP32 microcontroller 

retrieved the data from the ADS1256 in 24-bit digital format. 

The acquired data were sent to the computer by UART 

communication. Additionally, a 3,3 V voltage regulator was 

added to provide a stable voltage source for the Wheatstone’s 

bridges. The stability of the voltage source is important to 

ensure the stability of Wheatstone bridges. 

This acquisition board was powered by a LiPo (Lithium 

Polymer) battery with a capacity of 5000 mAh at 3,7 V and a 

power of 18.5 W. This battery allowed the acquisition system 

to have an autonomy of 24 hours.  A 3D printed PLA box was 

used to hold all electronic devices (see Fig. 7(a)). 

 
Fig. 6  3D printed box for electronics. (a) Box (12x10x3.3 cm) containing 
the PCB for strain gauge signal conditioning. (b) Box (5.5x3.5x2.2 cm) 
containing the IMU circuit and a Velcro strap. 

D. Signal Acquisition 

The sensors used wireless communication based on the ESP-

NOW protocol. The communication architecture is presented in 

Fig. 8. A total of 12 signals from the strain gauges were 

recorded for each movement. In addition to these signals, the 

triaxial linear accelerations and angular velocities coming from 

two IMUs were used. Combining the signals from the strain 

gauges and inertial units, a total of 24 signals were obtained. 

The data were sampled at a frequency of 100 Hz. The frequency 

of 100 Hz was chosen to limit the amount of data to be 

processed.  Human movement frequency is 0-20 Hz [30]; hence 

the theorem of Shannon Nyquist was respected. A Butterworth-
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type digital low-pass filter of order 4 with a cut-off frequency 

of 1 Hz was used to filter the signal from the strain gauges. The 

first hundred data for each gauge was averaged and used to set 

an offset for the following data. The raw signals from IMUs 

were used. 

 

 
 
Fig. 7  Communication architecture including the microcontroller, the 
communication protocols (ESP-NOW, UART), and the variables 
corresponding to the sensors output. 

IV. RESULTS 

A sequence of movements was established to verify the 

system. The sequence was as follows EF-NM-EE-NM-FP-NM-

FS-NM-WF-NM-WE-NM-WL-NM-WR-NM-PG-NM. The 

resting position NM was observed between each movement.  

Fig. 9 shows the data acquired during the sequence of 

movement performed by the subject. Fig 9 (a) shows the 3 

linear accelerations and 3 angular velocities coming from IMU 

(1) which was placed on the hand. Fig 9 (b) shows the 3 linear 

accelerations and 3 angular velocities coming from IMU (2) 

which was placed on the forearm. Fig 9 (c) shows the data 

acquired by the strain gauge bracelet placed on the arm. Fig 9 

(d) shows the data acquired by the strain gauge bracelet placed 

on the forearm.  

 In Table I, the maximum voltage variation for each strain 

gauge was computed per movement. The gauges that have 

recorded a voltage variation (∆𝑉) superior to 1 mV were 

identified.  

 Furthermore, using the information in Table II the maximum 

∆𝑉 in both bending directions were computed per column to 

determine which strain gauges recorded more skin deformation 

for a particular movement, and per row to determine which 

movement produced the maximum ∆𝑉 for each gauge. The 

results are displayed in Table III and described here below. 

1) Elbow Flexion (EF): The strain gauges that recorded larger 

deformations were B6, AB6 and AB1, with 4.5 mV, 6.03 mV, 

and 4.48 mV, respectively.  Compared to all strain gauges, AB6, 

AB3 recorded the greatest deformations for this movement in 

both bending directions. Compared to other movements, strain 

gauges B6, AB1, AB6 recorded their greatest convex 

deformation and B3 recorded its greatest concave deformation. 

IMU (1) and IMU (2) recorded similar angular velocities (gz1, 

gz2) around the Z-axis 

2) Elbow Extension (EE): The strain gauges that recorded larger 

deformations were B1, B5, B6 with -4.11mV, -2.99mV and -

1.98mV, respectively. Compared to all strain gauges, AB6, AB1 

recorded the greatest deformations for this movement in the two 

bending directions. Compared to other movements, strain 

gauges B1, B2, B5 recorded their greatest concave deformation. 

IMU (1) and IMU (2) recorded similar angular velocities (gz1, 

gz2) around the Z-axis. 

3) Forearm Pronation (FP): The strain gauges B2, B4 with 

1.67 mV, 1.04 mV, respectively and AB1 and AB3 with 

1.61 mV, 0.95 mV respectively recorded larger deformations. 

Compared to all strain gauges, B2, B3 recorded the greatest 

deformations for this movement in both bending directions. 

Compared to other movements, strain gauges B2, recorded its 

greatest convex deformation. IMU (1) and IMU (2) recorded 

similar angular velocities (gx1, gx2) around the X-axis. 

4) Forearm Supination (FS): The strain gauges AB3, AB1, AB6, 

AB2, with -1.66mV, 1.30 mV, -1.14mV, 1.02 mV respectively 

and B6 with -1.14mV recorded larger deformations. Compared 

to all strain gauges, B6, AB3 recorded the greatest deformations 

for this movement in both bending directions. None of the 

gauges recorded their maximal deformation during forearm 

supination. IMU (1) and IMU (2) recorded similar angular 

velocities (gx1, gx2) around the X-axis. 

5) Wrist Flexion (WF): The strain gauges AB1, AB2 AB5 with 

2.41 mV, 1.36 mV, -1.89mV respectively and B6 with 1.81 mV 

recorded larger deformations. Compared to all strain gauges, 

AB1, AB5 recorded the greatest deformations for this movement 

in both bending directions. Compared to other movements, 

strain gauges AB5 recorded its greatest concave deformation 

6) Wrist Extension (WE): The strain gauges B4, B6 with 

1.34 mv, 1.35 mV, respectively and AB1, AB2, AB3, AB4 with 

-3.40mV, 1.55 mV, 1.52 mV, 1.06 mV respectively recorded 

larger deformations. Compared to all strain gauges, AB2, AB6 

recorded the greatest deformations for this movement in both 

bending directions. Compared to other movements, strain 

gauges B4 recorded its greatest convex deformation. IMU (1) 

recorded angular velocities (gy1) around the Y-axis. IMU (2) 

placed on the forearm did not record any movement. 

7)  Wrist Ulnar deviation (WL): The strain gauges B6 with 

1.39 mV and AB1, AB2 and AB3 with 2.65 mV, 1.58 mV, 

2.19 mV respectively recorded larger deformations. Compared 

all strain gauges, AB1, B3 recorded the greatest deformations 

for this movement in both bending directions. Compared to 

other movements, strain gauges B1, AB3 recorded their greatest 

concave deformations. IMU (1) and IMU (2) recorded similar 

angular velocities (gz1, gz2) around the Z-axis. 

8) Wrist Radial deviation (WR): The strain gauges B2, B6, with 

1.26 mV, 1.02 mV respectively and AB1, AB2, AB4, AB5, AB6 

with -4.32mV, 1.67 mV, 1.22 mV and 1.14 mV respectively 

recorded larger deformations. Compared to all strain gauges, 

AB2, AB1 recorded the greatest deformations for this movement 

in both bending directions. Compared to other movements, 

strain gauges B5, AB4, AB5 recorded their greatest convex 

deformation and AB1, AB6 recorded its greatest concave 

deformation. IMU (1) and IMU (2) recorded similar angular 

velocities (gz1, gz2) around the Z-axis. 

9) Power Grips (PG): The strain gauges AB1, AB2, AB3 with 

1.71 mV, 1.81 mV and -2.32 mV respectively recorded larger  
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TABLE II. 
PEAK SIGNAL INTENSITY FOR EACH STRAIN GAUGE PER MOVEMENT(MV) 

 EF EE FP FS WF WE WL WR PG 

B1 -0.62 -4,11 -0.71 -0.43 -0.32 -0.32 0.13 -0.37 -0.14 

B2 1.02 -1.15 1.67 0.72 1.30 0.94 0.74 1.26    0.51 

B3 -1.19 -0.98 -0.98 -0.70 -0.72 -0.69 -0.74 -0.62 -0.63 

B4 0.21 1.24 1.09 0.52 0.50 1.34 0.85 0.76 0.66 

B5 -1.22 -2.99 0.39 -0.36 0.20 0.26 0.44 0.45 0.35 

B6 4.50 -1.98 -0.85 1.25 1.81 1.45 1.39 1.02 0.80 

AB1 4.48 1.38 1.61 1.30 2.41 -3.40 2.65 -4.32 1.71 

AB2 0.82 0.44 0.60 1.01 1.36 1.55 1.58 1.67 1.81 

AB3 -1.54 0.76 0.95 -1.66 0.89 1.52 2.19 0.85 -2.42 

AB4 -0.45 -0.95 -0.26 0.65 -0.46 1.06 0.30 1.22 0.79 

AB5 0.65 0.64 0.24 0.59 -1.89 0.91 0.35 1.14 0.62 

AB6 6.03 1.54 0.69 -1.14 -0.88 -0.86 -0.41 -1.32 0.29 
 

TABLE III. 
STRAIN GAUGE SIGNAL INTENSITY PATTERN. 

 
Maximum voltage variation per 

strain gauge  

Maximum voltage variation 

per movement 

 (+) mV max (-) mV Min (+) mV max (-) mV max 

EF B6, AB1, AB6 B3 AB6 AB3 

EE 
- B1, B2, B5, 

B6, AB4 
AB6 AB1 

FP B2 - B2 B3 

FS - - B6 AB3 

WF - AB5 AB1 AB5 

WE B4 - AB2 AB6 

WL B1, AB3 - AB1 B3 

WR B5, AB4, AB5 AB1, AB6 AB2 AB1 

PG AB2 AB3 AB2 AB3 
 

deformations. Compared to all strain gauges, AB2, AB3 

recorded the greatest deformations for this movement in both 

bending directions. Compared to other movements, strain 

gauges AB2 recorded its greatest convex deformation and AB3 

recorded its greatest concave deformation. IMU (1) recorded 

angular velocities (gy1) around the Y-axis. IMU (2) placed on 

the forearm didn’t record any movement. 

V. DISCUSSION 

In this work a new generation of sensor combining strain 

gauges and inertial units was presented to identify intentions of 

movements of the human upper limb.  

A. Movement identification 

Table I identifies the muscles responsible for each 

movement. Fig. 2 shows the placement of the sensors regarding  

the muscles involved in the upper limb motion. A link was 

established between the movements performed by the subject 

(Fig. 3) and the signal recorded by the strain gauges (Fig. 9). 

1) Elbow Flexion (EF): The strain gauge B6 was placed on the 

biceps brachii which explains the high intensity signal (Fig. 9). 

By going around the arm with the strain gauge bracelet (AB), 

AB1 and AB6 were placed near the brachioradialis, which 

explains the deformation obtained. However, the gauge B6 was 

expected to record more deformation as the biceps brachii is the 

main muscle responsible of the flexion of the forearm. 

Fig. 8  (a) Tri-axial linear acceleration and triaxial angular velocity from the IMU (1) placed on the hand. (b) Tri-axial linear acceleration and triaxial 
angular velocity from the IMU (2) placed on the forearm. (c) Data from the six strain gauges in the bracelet placed on the arm (B). (d) Data from the 
six strain gauges in the bracelet placed on the forearm (AB) 
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2) Elbow Extension (EE): The strain gauges B1 and B6 were 

placed on the biceps brachii which relaxes during the elbow 

extension. It is therefore normal to record deformations in the 

opposite direction to the bending movement for gauges B6 and 

B1(Fig. 9(c)). The signal of B6 went from positive for elbow 

flexion to negative for elbow extension. The strain gauge B5 

was placed closed to the Brachialis which also relaxes during 

elbow extension. The gauges AB1 and AB6 were placed near 

the Brachioradialis and recorded deformations. These 

measurements can be explained by the nature of the extension 

movement which tends to stretch the skin of the forearm at full 

range of motion. 

3) Forearm Pronation (FP): The strain gauges AB1 and AB3 

were placed around the pronator teres which is mainly 

responsible for the pronation of the forearm. It is therefore 

normal that AB1 and AB3 recorded signals with high intensity. 

The biceps brachii is partly involved in the pronation 

movement of the forearm. The movement of the biceps creates 

large deformation of the skin around the arm which matches the 

high intensity signals recorded by strain gauges B2 and B4. 

4) Forearm Supination (FS): The strain gauges AB1, AB2 and 

AB3 were located around the supinator which is responsible for 

the supine movement of the forearm. The strain gauges AB1 and 

AB3 were involved in both pronation, and supination. B6 is 

centered on the biceps brachii which is involved in this 
movement. The forearm pronation and supination movement 

are like a twisting movement which causes the skin of the 

forearm to stretch, it is normal that most of the strain gauges of 

the bracelet placed on the forearm recorded deformations. 

Most of the muscles involved in the subsequent movements 

are in the forearm. Hence, the gauges of the bracelet(B) placed 

on the arm recorded decreasingly weak signals (Fig. 9 (c)). The 

muscles in the forearm are packed side by side or overlapped so 

it was more difficult to make a link between the muscles 

involved in the movement and the placement of the strain 

gauges.  

5) Wrist Flexion (WF): The strain gauges AB1, AB2, AB5 were 

found close to the muscle group involved in the flexion 

movement of the wrist. The gauge AB1 gauge is centered on the 

flexor carpi radialis which explains a stronger signal. 

6) Wrist Extension (WE): The strain gauges AB1, AB2, AB3, 

AB4 were found near the muscles involved in the extension 

movement of the wrist. AB1 is near the extensor carpi ulnaris, 

and the digitorum extender which explains a stronger signal. 

7) Wrist Ulnar deviation (WL): The muscles responsible for the 

ulnar deviation of the wrist is the extensor Carpi ulnaris. The 

strain gauges AB1 and AB3 were placed near this muscle, which 

explains the signals recorded. 

8) Wrist Radial deviation (WR): The muscles responsible for 

the radial deviation of the wrist are the flexor carpi radialis, 

extensor carpi radialis longus, extensor carpi radialis Brevis. 

This group of muscles goes almost all around the forearm, 

which explains the deformations recorded by most of the 

gauges of the strain gauge bracelet placed on the forearm. 

9) Power Grips (PG): The gripping movement mainly involves 

the extrinsic and intrinsic muscles of the hand. Certain muscles 

of the forearm (e.g., flexor digitorum superficialis) are involved 

in power grips which explains the signals recorded by strain 

gauges AB1, AB2, and AB3. 

Data from IMUs (Fig 9 (a), (b)) provided additional 

information about the motion. Although it was difficult to have 

a visual interpretation of the linear acceleration’s data, the 

angular velocities provided information used to derive a 

relation between the graphs obtained and the movements. 

For the movements of EF, EE, FP and FS it was expected to 

register similar signals of linear acceleration and angular 

velocities from the two IMUs. Indeed, for these movements the 

IMUs were aligned along the same axes and the wrist remained 

fixed which simulates two IMUs placed on a rigid bar. The 

observations of the graphs confirmed our assertion. 

The movements of WF, WE, WR, WL showed a quasi-static 

angular acceleration for the IMU placed on the forearm (Fig. 9 

(b)). Indeed, only the wrist performs these movements, so it is 

normal to record accelerations only from the IMU (1) placed on 

the hand. The gripping movement consisted of opening and 

closing the hand, so no acceleration nor velocities should be 

recorded by the IMUs. However, humans can hardly maintain 

a perfect static position, hence the observation of slight 

accelerations was normal (Fig. 9(a), (b)).  

The results showed that the strain gauge bracelet placed on 

the forearm recorded signals that can distinguish between 

different wrist movements and the power grips movement. The 

strain gauge bracelet placed on the arm recorded signals that 

can distinguish between forearm movements. Also, the 

combination of strain gauges that recorded maximum ∆𝑉 is 

unique for each movement (see Table III). This uniqueness 

represents a pattern to identify upper limb movement.  

Referring to Table III, it is worth noting that: 

1) There was no strain gauge which measured its greatest 

deformation for forearm supination. Hence, no strain gauge 

was optimally placed to detect forearm supination.   

2) The strain gauge AB6 recorded its maximum ∆𝑉 and 

recorded more signal for elbow flexion compared to other strain 

gauges. This strain gauge is a good discriminant for this elbow 

flexion.  

3) The strain gauge B2 recorded its maximum ∆𝑉 and recorded 

more signal for forearm pronation compared to other strain 

gauges. This strain gauge is a good discriminant for forearm 

pronation. 

4) The strain gauge AB5 recorded its maximum ∆𝑉 and 

recorded more signal for wrist flexion compared to other strain 

gauges. This strain gauge is a good discriminant for wrist 

flexion. 

5) The strain gauge AB1 recorded is maximum ∆𝑉 and recorded 

more signal for wrist radial deviation compared to other strain 

gauges. This strain gauge is a good discriminant for this wrist 

radial deviation. 

6) The strain gauges AB2 and AB3 recorded their maximum ∆𝑉 

and recorded more signal for power grasp compared to other 

strain gauges. These gauges are good discriminants for power 

grasp. 

The impacts of adding IMUs to the system are as follows: 

1) The angular velocities helped to identify the end and 

beginning of each movement in the sequence. 

2) The position of the limb could be inferred using angular 

velocities. 
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3) The linear acceleration contribution is unclear at this point. 

However, further analysis using different techniques could 

provide more information regarding the kinematics data. 

The strain gauges provided information about muscle 

contraction and the IMUs provided information about the 

motion. The preliminary results obtained proved the capability 

of this sensor to record signals making it possible to distinguish 

9 movements of the upper [RH]. 

B. Sensor design: 

Moreover, the proposed system was compact and portable 

making ideal for daily activities (Fig. 7 (a), (b)).  The strain 

gauge bracelet used strain gauge and kinesiological tape which 

are commercially available. The IMU (1) placed on the hand 

was not optimal regarding its size. However, sensor of smaller 

size can solve this issue.  

Each strain gauge in the matrix collected a specific signal. 

The third and fourth maximum ∆𝑉 (see Table II) were recorded 

by gauges B1(4.48 mV) and AB1(-4.11mV) which were placed 

horizontally (Fig. 1). Aligning the strain gauges in the direction 

of the greatest strain [15] was not optimal since the sensor did 

not record the deformation about the other axis. This 

information can be very useful for a future classification 

algorithm to distinguish between different movements. 

Measuring strain on multiple axes is therefore important to 

better capture skin deformation due to muscle activity [DR1]. 

 The new flexible PCB-based strain gauge matrix fabrication 

method was systematic, so the shape, size and orientation of the 

gauges can be changed depending on the application. Different 

strain gauge matrices can be made using flexible PCBs and 

placed in different sites on the human body to collect different 

information [DR3]. This technique also provided a good solid 

connection with the gauges that prevented the connections to 

break or unsolder during movements [DR2] as a solution to the 

robustness issues noted in [15].  

The number of strain gauges, their orientations as well as the 

position of the strain gauge bracelet are important factors that 

can be optimized by referring to basic knowledge of human 

anatomy. This knowledge does not need to be specific as it is in 

the case of sEMG which requires the sensors to be placed on 

the right muscle to detect the right signal [12]. The system had 

12 channels of strain gauges, and more strain gauges can be 

added if necessary. It is nearly impossible/or too bulky to place 

the same number of sEMG electrodes on a person without 

interfering with his daily activities. Also, the frequency of data 

acquisition of the proposed system was customizable between 

40 Hz to 200 Hz which is far less than sEMG sampling 

frequency (1000 Hz)[14]. A technical limitation related to the 

use of Wheatstone bridge was the need to recalibrate each 

bridge after certain amount of use. A subsequent work can 

investigate that issue. 

VI. CONCLUSION 

The objective of this research was to develop a novel 

wearable system to identify intentions of movement by 

combining strain gauges and inertial measurement units. The 

proposed system is composed of 1. two strain gauge bracelets 

using 6 strain gauges each, connected to a flexible printed 

circuit board and 2. two inertial measurement units. The system 

was tested on the upper limb, and successfully identified 9 main 

movements through the variations in signal intensity of the 

strain gauges. However, the data collected was rich in 

information and a machine learning or deep learning algorithm 

could better capture the underlying patterns of each movement. 

These results show the potential of such sensory system to 

become a smart wearable sensory system to detect human 

movement intention. The future perspectives will be to extend 

the system, e.g., to the lower limbs, and to identify complex 

movement combinations by using pattern recognition 

algorithms with such sensory system.  
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