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RÉSUMÉ 

Les études récentes ont démontré que les signaux provenant des capteurs d’électromyographie de 

surface pouvaient être utilisés pour identifier les intentions de mouvements. Ces capteurs sont 

souvent combinés à d’autres types de capteurs afin d’augmenter la dimensionnalité des données. 

La combinaison entre les capteurs d'électromyographie de surface et les centrales inertielles est la 

méthode de détection multimodale la plus couramment utilisée.  De nos jours, cette combinaison 

est utilisée pour identifier l'intention de mouvement chez l'Homme, par ex. pour contrôler leur 

prothèse ou exosquelette. Cependant, les capteurs d’électromyographie présentent différents 

inconvénients, par exemple ils nécessitent généralement deux électrodes placées sur deux sites de 

la peau, ce qui les rend encombrants. La fréquence d’acquisition des signaux électromyographiques 

est généralement de 1000Hz ce qui réduit le nombre de capteurs qui peuvent être utilisés 

simultanément. Les dispositifs embarqués utilisent généralement que 2 ou 3 de ces capteurs en 

raison des requis élevés en mémoire et en puissance de calcul nécessaires pour traiter ces 

informations. Aussi, ces capteurs sont également très sensibles aux bruits. Cette nature variable des 

signaux d'électromyographie a motivé la recherche de solutions pouvant utiliser plusieurs capteurs 

fonctionnant à des fréquences d’acquisitions plus basses pour les applications quotidiennes. 

L'objectif de ce mémoire de maîtrise est de développer un système portable permettant d’identifier 

les intentions de mouvement en combinant des jauges de déformation et des centrales inertielles. 

Le système développé est composé de deux bracelets utilisant chacun six jauges de déformation 

connectées à un PCB flexible et deux centrales inertielles. Physiologiquement, les jauges de 

déformation mesurent la déformation de la peau due aux contractions musculaires tandis que les 

centrales inertielles fournissent des données complémentaires sur la cinématique du mouvement. 

Les données ont été collectées sur sept personnes saines. Un algorithme de classification utilisant 

une combinaison entre un réseau de neurones récurrents et un réseau de neurones convolutif a 

permis d’identifier neuf mouvements du membre supérieur ainsi qu’un mouvement dit de repos. 

L’algorithme de classification a atteint une précision de classification de 89.3% en utilisant 

uniquement les signaux des jauges de déformations. L'ajout des informations cinématiques a 

produit une augmentation de la précision de classification de 5,8 % pour atteindre 95.1%. Ces 

résultats démontrent le grand potentiel d'un tel système à identifier les intentions de mouvements. 
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ABSTRACT 

Recent studies have shown that signals obtained from electromyography sensors can be used to 

identify human movement intentions. These sensors are often paired with other types of sensors to 

increase the dimensionality of the data. The combination of surface electromyography sensors and 

inertial units is the most commonly used multimodal sensor technique. Nowadays, this 

combination is used to identify the intention of movement in humans, e.g. to control their prosthesis 

or exoskeleton. However, electromyography sensors have various drawbacks. These sensors 

generally require two electrodes placed at two sites on the skin, which makes them bulky. 

Additionally, the frequency of acquisition of electromyography signals is generally about 1000Hz 

which reduces the number of sensors that can be used simultaneously. Indeed, on-board devices 

generally use 2 or 3 of these sensors because of the high memory and computing power required 

to process the information. These sensors are also very sensitive to noise. The variable nature of 

electromyography signals has motivated the search for alternatives that can utilize multiple sensors 

operating at lower frequencies for everyday applications. The objective of this study is to develop 

a newly portable system to identify movement intentions by combining strain gauges and inertial 

units. The system is composed of 1. two bracelets each using six strain gauges, connected to a 

flexible PCB and 2. two inertial units. Physiologically, strain gauges measure the deformation of 

the skin due to muscle contractions while inertial units provide additional data on the kinematics 

of movement. Data was collected from seven healthy subjects. A classification algorithm based on 

a combination of a recurrent neural network and a convolutional neural network has identified nine 

upper limb movements as well as one rest movement. The classification algorithm achieved a 

classification accuracy of 89.31% using only the signals from the strain gauges. By adding the 

kinematic information yielded an increase in classification accuracy of 5.74% to obtain a final 

accuracy of 95.05%. These results show the great potential of using such a system to accurately 

identify movement intentions. 
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CHAPITRE 1 INTRODUCTION 

L’analyse des mouvements chez l’humain est un sujet de recherche majeur avec des applications 

en biorobotique, diagnostic clinique, ingénierie de la réadaptation et en interfaces Homme-

Machine. Dans le domaine de la réadaptation, une des applications de l’analyse de mouvement 

consiste à détecter les intentions de mouvements de l’utilisateur afin de contrôler des exosquelettes, 

pour des personnes ayant des faiblesses musculaires, ou des prothèses myoélectriques, pour des 

personnes ayant subi une amputation. Pour effectuer ce contrôle, les contractions musculaires 

générées par l’usager sont utilisées afin d’actionner le système. Les capteurs d’électromyographie 

sont les capteurs les plus utilisés pour détecter ces contractions musculaires. Cependant, hormis les 

inconvénients reliés aux capteurs d’électromyographie, les dispositifs commerciaux utilisent un 

nombre limité de ces capteurs (généralement deux) ce qui limite le nombre de degrés de liberté 

(DDL) des systèmes actionnés. En effet, pour effectuer des tâches de la vie quotidienne comme 

l’ouverture d’une porte, plusieurs DDL sont sollicités pour effectuer la flexion et l’extension du 

coude, la préhension de la main ainsi que la pronation et supination de l’avant-bras. Il faut un 

nombre élevé de capteurs pour recouvrir ces groupements musculaires afin d’avoir un nombre 

adéquat de DDL. 

Différents types recherches se sont penchés sur le développement de nouveaux capteurs pouvant 

remplacer les capteurs d’électromyographies et sur de nouvelles stratégies de contrôles. 

Contrairement, aux capteurs d’électromyographies qui ont une structure rigide, les technologies 

émergentes se concentrent sur l’utilisation de capteurs flexibles qui sont capables d’atteindre des 

déformations du même ordre de grandeur que la peau humaine. Ces capteurs sont souvent combinés 

à d’autres types de capteurs, chacun mesurant des modalités différentes, et permettant de 

reconstituer le mouvement avec plusieurs dimensionnalités. 

Les stratégies émergentes de contrôles reposent quant à elles sur les algorithmes de reconnaissance 

de formes. Ces algorithmes ont l’avantage de pouvoir traiter un important flux de données pour les 

classifier. Ainsi, cette stratégie permettrait d’avoir un contrôle plus intuitif des exosquelettes ou 

des prothèses myoélectriques avec un nombre de DDL plus élevé. 

Dans ce contexte, l’objectif de ce mémoire est de développer un capteur portable identifiant les 

intentions de mouvement en combinant des jauges de déformation et des centrales inertielles. 
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Dans cette thèse, le chapitre 2 introduit les types de signaux qui seront utilisés. Par la suite, les 

concepts de bases permettant la compréhension des algorithmes d’apprentissage profond seront 

abordés. Ces concepts permettront de comprendre des architectures de bases comme celles des 

perceptrons multicouches (MLP) et des architectures plus complexes comme les réseaux de 

neurones convolutifs (CNN) et réseaux de neurones récurrents (RNN). Le chapitre 3 présente la 

justification du projet. Le chapitre 4 présente la méthodologie complémentaire à celle de l’article.  

Le chapitre 5 présente l’article qui a été soumis pour publication. Le chapitre 6 présente les résultats 

complémentaires. Un chapitre de discussion sera présenté à la suite des résultats. Dans le dernier 

chapitre, une brève conclusion est présentée avec des réflexions sur le travail réalisé tout au long 

du mémoire ainsi que des commentaires sur les perspectives d’améliorations. 
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CHAPITRE 2 REVUE DE LITTÉRATURE 

Une approche émergente pour contrôler des exosquelettes et des prothèses myoélectriques 

consiste à utiliser les mesures d’électrodes d’électromyographie de surface (sEMG) [1]. Ces 

mesures combinées à des algorithmes de reconnaissance de formes permettent d’identifier 

l’intention de  mouvement de l’utilisateur et ainsi contrôler un actionneur [2]. Cette méthode a le 

potentiel de permettre aux personnes souffrant de diverses déficiences physiques et/ou troubles 

neuromusculaires de récupérer une partie de leurs fonctions motrices et ainsi améliorer leur qualité 

de vie [3]. 

2.1 Les stratégies de contrôle 

Malgré les avancées technologiques dans le domaine des exosquelettes et des prothèses 

myoélectriques, les stratégies de leur contrôle quant à elles, n’ont pas évolué significativement. En 

effet, la majorité des prothèses commerciales actuelles peuvent répliquer qu’un nombre limité des 

mouvements du membre supérieur (nombre de DDL limité) [4]. La stratégie de contrôle de ces 

prothèses repose sur un nombre peu élevé d’électrodes (1-3), et sur un contrôle séquentiel ou un 

déclencheur de mouvement spécifique, souvent par l’utilisation d’un bouton externe, ou d’une 

application mobile [5], [6]. Pour le contrôle séquentiel, un signal spécifique, par exemple une 

activation d’électrodes placées sur une paire de muscles antagonistes, permet de choisir un 

mouvement parmi un ensemble de mouvements prédéfinis [5], [6]. Pour le déclencheur de 

mouvement, une séquence d’activation particulière des électrodes ou l’atteinte d’un seuil bien 

défini par le signal sEMG permettent d’actionner un mouvement spécifique [5], [6]. Ces méthodes 

de contrôle ne sont pas intuitives et sont encore loin d’être naturelles et nécessitent un certain 

niveau de compétence ou de longues heures de formation de l’utilisateur [5], [6]. 

Durant ces dernières années, les stratégies de contrôle basées sur la reconnaissance de formes 

utilisant des algorithmes d’intelligence artificielle ont prouvé être mieux adaptées aux besoins des 

utilisateurs. La reconnaissance de formes permet d’identifier les caractéristiques spécifiques à 

chaque mouvement, et ainsi de contrôler un nombre plus élevé de mouvements (plus de DDL) 

comparés aux méthodes classiques de contrôle [7]. Cette stratégie pourrait permettre d’obtenir un 

contrôle plus intuitif de la prothèse ou de l’exosquelette ce qui représenterait un apport majeur. 
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Pour ce faire, les signaux provenant de différentes électrodes sont utilisés pour entraîner un 

algorithme de reconnaissance de formes. Il existe différents algorithmes de classifications de 

mouvements, mais leur but principal reste le même, classifier correctement un mouvement en 

fonction des signaux reçus. Avec cette stratégie, l’utilisateur peut simplement penser à exécuter un 

mouvement de façon naturel (ex. : pronation de l’avant-bras) et en contractant le membre les 

signaux peuvent être reconnus par l’algorithme de reconnaissance de formes et ce mouvement sera 

exécuté par la prothèse ou supporté par l’exosquelette [8]. 

Les étapes majeures de la stratégie de contrôle utilisant un algorithme de reconnaissance de formes 

sont illustrées à la Figure 2.1. Elle repose sur : 

• L’acquisition des signaux : utilisation des capteurs pour collecter les signaux d’activations 

musculaires. 

• L’extraction de caractéristiques : permettant de retenir les informations les plus 

importantes du signal. 

• La classification : prédiction du mouvement du membre  

• La production du signal de contrôle : permettant d’activer l’actionneur pour effectuer le 

mouvement désiré [9].  

 

Figure 2.1 Étapes du contrôle basé sur la reconnaissance de formes. Le processus commence par 
les signaux bruts et se termine par une sortie de contrôle. Figure adaptée de [10] 

Les étapes majeures de la stratégie de contrôle que sont l’extraction de caractéristiques, la 

reconnaissance de formes et la classification des mouvements sont discutées dans les sections 

suivantes. 

2.1.1 Extraction et sélection de caractéristiques 

L’extraction des caractéristiques consiste à appliquer des transformations sur des données brutes 

afin d’obtenir un ensemble de caractéristiques pertinentes utilisable par les algorithmes 

d’apprentissage machine [11]. Ces caractéristiques doivent être en mesure de capter l’information 

principale du signal permettant d’améliorer la performance du classificateur.  
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Dans le processus de sélection des caractéristiques, plusieurs techniques comme l’analyse des 

composants principaux (PCA), l’analyse discriminante linéaire (LDA), l’analyse des composantes 

indépendantes (PCI), les valeurs statistiques et la mesure d’entropie peuvent être employées [10], 

[12], [13]. En plus, les caractéristiques peuvent être étudiées dans le domaine temporel, dans le 

domaine fréquentiel ou une combinaison des deux (domaine temps-fréquence) [14]. Les 

caractéristiques dans le domaine temporel incluent la moyenne, la médiane, la variance, la moyenne 

quadratique (RMS), l’écart type et l’intervalle interquartile [14]. Les caractéristiques du domaine 

fréquentiel, qui représentent principalement la structure périodique du signal, sont la transformée 

de Fourier, l’entropie spectrale, l’énergie spectrale et les coefficients des filtres autorégressifs [14]. 

Les caractéristiques du domaine temps-fréquence sont utilisées pour étudier à la fois les 

caractéristiques temporelles et fréquentielles de signaux complexes et utilisent en général des 

techniques d’ondelettes, telles que les coefficients d’ondelettes ou l’énergie des coefficients 

d’ondelettes [15]. 

Après avoir déterminé un ensemble de caractéristiques provenant du signal d’origine, les 

algorithmes d’extractions de caractéristiques peuvent être combinés à des algorithmes de sélection 

de caractéristiques. Ces derniers ont pour but de réduire la dimensionnalité des données en 

identifiant les caractéristiques les plus importantes pour le classificateur [16].  

En plus de ces caractéristiques individuelles, des travaux de recherche ont été menés sur leurs 

combinaisons pour développer de nouveaux ensembles de caractéristiques. La combinaison des 

caractéristiques temporelles utilisées par Hudgins [7] est la plus utilisée et comprend les 

caractéristiques suivantes : MAV (valeur absolue moyenne), WL (longueur d’onde), ZC (passage 

à zéro), and SSC (changement de signe de la pente). Plus récemment, Guo Shuxiang et al. [17] ont 

proposé huit combinaisons de quatre méthodes d’extraction de caractéristiques RMS (racine 

moyenne quadratique), DFA (analyse de fluctuation sans tendance), WP (pics de poids) et MM 

(modèle musculaire). De nombreuses études ont montré que le succès des algorithmes de 

classification dépend fortement de la qualité l’extraction et de la sélection des caractéristiques [17]. 

Il est donc essentiel de déterminer les caractéristiques qui ont le plus d’impacts sur l’algorithme de 

classification. 

 



6 

 

2.1.2 Reconnaissance de formes 

Après avoir extrait et sélectionné les caractéristiques, des algorithmes de reconnaissance de formes 

sont utilisés afin de corréler les caractéristiques extraites dans des classes de mouvement 

spécifiques. Les algorithmes de reconnaissance de formes les plus utilisés dans les récents travaux 

sont l’analyse discriminante linéaire (LDA) [12], les machines à vecteurs de support (SVM) [18], 

et les modèles de Markov [19]. 

 Les classificateurs LDA ont longtemps été considérés comme la meilleure approche pour la 

classification des signaux myoélectriques. Le principal avantage de LDA est sa simplicité de mise 

en œuvre, surtout pour les systèmes embarqués, et sa facilité d’entraînement. Cependant, le LDA 

présente plusieurs inconvénients. En effet, un classificateur LDA ne peut produire qu’une seule 

sortie, ainsi pour les applications où plus d’un mouvement est exécuté, il est nécessaire d’avoir un 

classificateur pour chacun des mouvements [20].  

Hormis le LDA, de nombreux travaux dans la littérature ont mis en évidence la pertinence des 

réseaux de neurones (NN) à classifier des ensembles de données. L’avantage des réseaux de 

neurones réside dans leur capacité à représenter à la fois des relations linéaires et non linéaires ; et 

apprendre ces relations directement à partir des données modélisées [5]. Englehart et al. [21] ont 

développé un NN à perceptron multicouche (MLP) pour classifier des caractéristiques du domaine 

temporel des signaux myoélectriques. L’algorithme développé a permis de classifier quatre types 

de mouvements du membre supérieur, avec un taux d’erreur d’environ 10%. Les travaux effectués 

par l’équipe des Prof. Raison et Prof. Achiche (Gaudet et al. [22]) ont proposé un MLP pour 

classifier 8 mouvements du membre supérieur de cinq amputés transhuméraux et ont obtenu une 

précision de classification compris entre 60.9% et 93.0%.  

Atzori et al. [23] ont proposé un réseau de neurones convolutif (CNN) pour  classifier les 

mouvements du jeu de données Ninapro 1 [24] et ont atteint une précision de classification de 66,6 

± 6,4 % sur plus de 50 mouvements de la main. La motivation derrière l’utilisation des CNN réside 

dans leur puissante fonction d’extraction de caractéristiques [25]. En effet, ils sont capables 

d’apprendre des caractéristiques pertinentes directement à partir des données. Cependant, les CNN 

ne prennent pas en compte les dépendances temporelles entre les données. Les signaux 

physiologiques sont séquentiels de nature, et il est important de capter cette information. Pour cela, 

les réseaux de neurones récurrents (RNN) sont utilisés. Les RNN permettent de prendre en 
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considération la dépendance temporelle entre les données en changeant dynamiquement leur état 

interne [25]. Ils sont utilisés pour la prédiction et classification de séries chronologiques [25]. 

Récemment, les unités de mémoire à long court terme (LSTM) et les unités récurrentes fermées 

(GRU) sont devenues les deux architectures RNN les plus utilisées sur les données chronologiques. 

Les travaux effectués par l’équipe des Prof. Raison et Prof. Achiche (Barron et al. [26]) ont proposé 

un RNN pour identifier 6 gestes du membre supérieur de cinq amputés transhuméraux et ont obtenu 

une précision de classification de 79.7%. Wu et al., [25] ont combiné un CNN et un LSTM pour 

proposer le LCNN. Cette architecture tire l’avantage des LSTM qui sont utilisés pour extraire des 

informations temporelles dans les signaux et des CNN qui sont utilisés pour extraire des 

caractéristiques et classifier les signaux. La précision de classification moyenne du LCNN a atteint 

98,1% pour cinq mouvements de la main. 

Les réseaux de neurones profonds tels que les CNN et LSTM ont permis d’enregistrer des avancées 

majeures dans le domaine de l’intelligence artificielle. Il est donc important d’investiguer la 

capacité de ces méthodes pour la reconnaissance d’intention de mouvement.  

2.2 Les capteurs 

sEMG est une technique qui utilise des électrodes placées sur la peau à un endroit spécifique pour 

enregistrer les contractions musculaires [15]. La performance des stratégies de contrôle basées sur 

des algorithmes de reconnaissance de formes repose grandement sur la capacité des algorithmes à 

identifier les informations les plus importantes provenant des signaux sEMG qui sont eux-mêmes 

caractérisés par une grande variabilité et des propriétés non stationnaires [27]. La nature variable 

des signaux sEMG, rend très difficile la mise en place d’algorithmes robustes permettant 

d’identifier de manière efficace les mouvements du membre supérieur et de les utiliser pour 

contrôler des exosquelettes ou des prothèses [26].  

Dans les sections suivantes, d’autres types de capteurs pouvant remplacer les capteurs sEMG sont 

présentés. 

2.2.1 Combinaison de capteurs  

La combinaison entre les capteurs sEMG et les IMU est la combinaison de capteurs la plus 

couramment utilisée sur le membre supérieur [28]. Ces capteurs fournissent des informations qui 
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sont fréquemment utilisées pour identifier l’intention de mouvement chez l’Homme.  Les 

applications les plus répandues sont la reconnaissance des gestes de la main et du doigt [29],[30] 

pour classer les mouvements fantômes des membres supérieurs chez les amputés transhuméraux à 

partir du moignon afin de contrôler leur prothèse [22],[31] ou exosquelette [32].  

La combinaison entre sEMG et IMU peut se justifier physiologiquement, car : 

1. Les sEMG permettent de détecter l’intention de mouvement en mesurant l’activité 

musculaire. C’est pourquoi le sEMG reste le capteur principal pour commander les 

prothèses myoélectriques. 

2. Les IMUs fournissent des informations cinématiques supplémentaires sur le mouvement, 

c’est-à-dire les configurations d’articulation, les vitesses et les accélérations.  

Les IMUs pallient deux limitations des sEMG : 

1. Les sEMG souffrent généralement de l’effet de la position des membres, où les signaux 

sEMG pour le même mouvement sont différents dans différentes positions des membres 

[33], [34]. L’IMU peut donc fournir cette distinction. 

2. Les IMU sont particulièrement efficaces pour capturer des mouvements plus importants, 

tandis que les données sEMG ont permis de mieux distinguer les différentes formes de 

mains et les mouvements des doigts [29]. 

2.2.2 Inconvénients des capteurs EMGs 

Bien que les signaux sEMG sont les plus utilisés pour la détection des mouvements, il reste qu’ils 

présentent plusieurs inconvénients [35], [36]. 

1. Les signaux sEMG deviennent souvent instables en raison de la transpiration, des 

déplacements des électrodes, des artefacts de mouvement et du bruit causé par la présence 

d’équipements électroniques. [15],[36].  

2. De plus, une diaphonie peut se produire en raison du nombre élevé de muscles côte à côte 

et la fatigue musculaire peut affecter de manière cruciale la qualité des signaux [15],[36]. 

3.  La quantité de données provenant de sEMG (acquisition 1000 Hz) nécessite une puissance 

de calcul élevée pour les traiter en temps réel dans un dispositif portable [37]. 
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2.2.3 La recherche d’alternatives 

L’intérêt grandissant pour les technologies intelligentes portables nécessite le développement de 

nouveaux capteurs à faible coût, avec une sensibilité élevée et une faible limite de détection[38]. 

Les récentes recherches se sont penchées sur le développement de capteurs intégrés à des substrats 

qui ont la capacité de fléchir, de plier ou de s’étirer. Ces capteurs sont faits de matériaux 

biocompatibles qui peuvent atteindre des contraintes du même ordre de grandeur que les 

élastomères et la peau humaine, ce qui rend ces capteurs compatibles avec les technologies 

portables émergentes [39]. 

2.2.3.1 Les capteurs flexibles 

Ces capteurs sont généralement faits de deux composants : 

• Un matériau conducteur : L’élément de détection et/ou de transmission de signal 

• Un substrat : L’élément flexible utilisé pour encapsuler le matériau conducteur 

Le Tableaux 2.1 et le Tableau 2.2 font le résumé des substrats et conducteurs utilisés pour la 

fabrication de ces capteurs. 

 Tableau 2.1 les différents substrats utilisés dans la fabrication des capteurs 

Substrats Principe de fonctionnement 

Élastomères[40],[41]  Utiliser des polymères hautement flexibles, capables de se conformer à 

la peau qui se peut se déformer jusqu’à 30% de sa longueur initiale. 

Tissus [42],[43] Utiliser des fibres conductrices tissées de la même manière que les fibres 

conventionnelles qui agissent comme des éléments sensoriels.  

Les élastomères sont les substrats les plus utilisés pour la fabrication des capteurs flexibles. 

Certains sont capables de se déformer jusqu’à 700% sans perdre leurs propriétés mécaniques.  
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 Tableau 2.2 les différents types de conducteurs utilisés dans la fabrication des capteurs 

Conducteurs Principe de fonctionnement 

Films métalliques minces 

[44],[45] 

Rendre les matériaux conducteurs plus fins afin qu’ils deviennent 

flexibles. 

Métal liquide [46][47] Utiliser des métaux liquides (part ex eGaIn, Galistan) dans 

l’électronique flexible comme alternatives aux métaux 

conventionnels. 

Liquides et solutions 

ioniques [48], [49] 

Utiliser des solutions ioniques (par ex NaCl, KCl) comme des 

matériaux conducteurs. 

Encres conductrices 

[40],[50][51] 

Utiliser un solvant qui contient une suspension de particules 

conductrices, telles que les nanoparticules métalliques, les 

composés organométalliques, les nanotubes de carbone et 

Graphene comme conducteurs. 

 

Des exemples de capteurs flexibles sont présentés sur la Figure 2.2. Hirsch et al [46], a proposé un 

capteur utilisant un film métallique mince  Figure 2.2 (a). Ce capteur souple a été développé pour 

enregistrer l'amplitude des mouvements du doigt humain. Park et al [52] a proposé une peau 

artificielle utilisant comme substrat du silicone et comme conducteur un métal liquide (eGaIn) 

Figure 2.2 (b). Le principe de fonctionnement de cette peau artificielle repose sur le fait que la 

résistance du capteur change lorsqu’il subit une déformation. Gao et al [53], a proposé un capteur 

super-étirable à base de métal liquide Figure 2.2 (c). Ce capteur à une structure similaire à celle 

d’une jauge de déformation encapsulée dans un élastomère.  

L’utilisation de ces capteurs présente différents défis que les chercheurs s’efforcent de surmonter: 

• La généralisation des techniques de fabrication hautement spécialisées pour les matériaux 

souples  

•  L’intégration de l’électronique miniaturisée.  
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La résolution de ces défis améliorera considérablement l’utilité de ces méthodes pour fabriquer des 

capteurs qui pourront être utilisés en dehors d’un environnement de laboratoire. 

 

Figure 2.2 Exemples de capteurs souples. (a) Films métalliques minces biphasiques (solide-
liquide) intrinsèquement extensibles. Tiré de (Hirsch et al, 2016). (b) Peau artificielle douce 
utilisant des microcanaux intégrés et des conducteurs liquides. Tiré de (Park et al, 2012).  (c) 

Conception structurelle à microcanaux pour un capteur super-étirable à base de métal liquide à 
température ambiante. Tiré de (Gao et al,2019). 

 

2.2.3.2 Un concept préliminaire utilisant les jauges de déformation 

Les travaux effectués par l’équipe des Prof. Raison et Prof. Achiche (Zizoua et al. [41]) ont présenté 

une preuve de concept d’un bracelet utilisant des jauges de déformation unidirectionnelles pour 

l’identification de quatre mouvements du membre supérieur chez les amputés traumatiques : 

flexion/extension du coude et pronation/supination de l’avant-bras. 

Cependant ce système ne permet pas d’identifier des mouvements tridimensionnels, en raison de 

ces principales limitations : 

1. Déformations uniaxiales : les jauges ont été placées uniquement dans le sens longitudinal 

du biceps brachial ce qui ne permet pas d’enregistrer les déformations multiaxes de la peau.  
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2. Fragilité : les jauges de déformation étaient reliées par deux fils fins. Cela a permis une 

première preuve de concept, mais ces fils se brisent, ou se dessoudent après quelques 

utilisations. 

3. Non-portabilité : le système n’est ni compact ni portable ce qui limite son application dans 

la vie de tous les jours. 

4. Manque de contact conforme à la peau pendant le mouvement : les jauges de déformation 

étaient insérées dans un bracelet en silicone qui n’offrait pas de contact direct avec la peau 

limitant ainsi la capacité du système à mesurer la déformation de la peau. 

Dans la section suivante, le principe de fonctionnement de deux types de capteurs est présenté : les 

jauges de déformation et les centrales inertielles. 

2.2.4 Les capteurs à base de jauges de déformation 

Cette section nous introduit aux notions de base permettant de comprendre le fonctionnement des 

jauges de déformation. Il est inspiré du livre « Méthodes expérimentales et instrumentation en 

mécanique » [54]. 

2.2.4.1 Principe de fonctionnement 

La jauge de déformation, Figure 2.3, est un élément résistif. On la colle sur une pièce au point où 

on veut mesurer la déformation à travers un support d’isolation. Elle est constituée d’un fil fin 

enroulé selon une direction définie qui constitue la grille. Elle a une résistance nominale qui change 

proportionnellement à la déformation qu’elle subit. 

 

Figure 2.3 Exemple d’une jauge de déformation à trame pelliculaire 
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2.2.4.1.1 Sensibilité du matériau 

La résistance des fils conducteurs change lorsqu’ils sont étirés. La relation qui relie la variation de 

résistance d’un fil conducteur en fonction de sa déformation axiale est définie comme la sensibilité 

SA du matériau.  

La valeur SA n’est pas constante pour beaucoup de matériaux. Cependant pour des alliages comme 

le Constantan ou le Nichrome, la valeur SA est constante pour une grande plage de déformation. 

Aussi pour ces matériaux, SA est moins sensible aux variations de température.  

Le constantan est l’un des matériaux les plus utilisés pour la fabrication des jauges de déformations. 

C’est alliage constitué de 45% de Nickel et 55% de cuivre. Ce matériau présente les caractéristiques 

suivantes : 

- Sensibilité (SA~2.1) constante pour une très grande plage de déformation 

- Résistivité élevée (𝜌 = 50 × 10−6 Ω . 𝑐𝑚) ce qui permet de fabriquer de très petites jauges 

- Très stable et relativement peut affecter par les changements de température. 

𝑆𝐴 =
∆𝑅/𝑅
∆𝐿/𝐿  ( 2.1) 

∆𝑅/𝑅 : Variation relative de la résistance 

∆𝐿/𝐿 : Variation relative de la longueur 

𝑆𝐴 : Sensibilité du matériau à la déformation 

2.2.4.1.2 Facteur de jauge du fabricant (SG) 

À l’achat des jauges de déformation, le manufacturier procure la valeur de sensibilité du matériau 

SG. Contrairement à SA qui est une valeur théorique, SG est déterminé de façon expérimentale. En 

effet, SG est déterminée pour un lot de jauge de déformations à la suite d’essais standardisés. La 

jauge doit est être soumise à des déformations variant de 0 à 1000𝜇𝑚/𝑚 dans un champ de 

contrainte uniaxiale uniforme.  

Pour déterminer SG d’un lot de jauges, le fabricant fait un échantillonnage des jauges d’un lot sur 

lequel il effectue l’essai standardisé. Les procédures d’essais standardisés se font selon : 
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- Organisation internationale de Métrologie légale, recommandations no. 62 

- American Society for Testing and Materials, ASTM Method E251. 

2.2.4.1.3 Autocompensation de la température. 

Lorsqu’une jauge est soumise à une variation de température en l’absence de déformation 

mécanique, 3 phénomènes peuvent se produire : 

- Variation de la résistance de la jauge 

- Dilatation de la structure sur laquelle la jauge est collée 

- Dilatation de la grille de la jauge 

Il existe différentes techniques pour pallier les effets indésirables de variation de température. 

Cependant, cela sort du cadre de ce mémoire de maîtrise. Les jauges à base de Constantan qui est 

un matériau peu affecté par les changements de température seront utilisées dans le cadre de ce 

projet. 

2.2.4.2 Circuit de conditionnement : Pont de Wheatstone 

Les jauges de déformation sont des capteurs passifs qui nécessitent un circuit de conditionnement. 

La majorité des instrumentations commerciales utilisent une version plus ou moins modifiée du 

pont de Wheatstone, Figure 2.4. L’utilisation des jauges de déformation nécessite un circuit capable 

de mesurer de petites variations de résistance électrique (environ 10%). Le pont de Wheatstone est 

le circuit le mieux adapté pour ce genre d’applications.  

 
Figure 2.4 Pont de Wheatstone 

V : Alimentations DC 
 

R1, R2, R3, R4 : Résistances variables. 
 

Em : Voltage de sortie à un instrument 
d’impédance Zm 
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Le fonctionnement du pont de Wheatstone est basé sur le principe suivant : lorsque R1, R2, R3, 

R4  sont identiques, la valeur Em est égale à zéro (pont en équilibre). Ainsi, en modifiant la valeur 

d’une des résistances du pont on entraîne une variation du voltage de sortie. Il existe plusieurs types 

de ponts de Wheatstone, dans notre cas nous allons utiliser l’architecture du quart de pont présenté 

à la Figure 2.5. 

 

Figure 2.5 Configuration quart de pont de Wheatstone 

 

Dans cette architecture J1 représente la jauge de déformation. La jauge J1, et les résistances R2, R3, 

R4  ont les mêmes valeurs nominales de résistance théorique. En appliquant une déformation à la 

jauge J1, la résistance de la jauge change ce qui entraîne un déséquilibre du pont entraînant une 

variation de voltage mesurée ∆𝐸𝑚. 

2.2.4.3 Équilibrage initial du pont de Wheatstone 

Dans la configuration en quart de pont, Figure 2.6, la résistance R2 a été remplacée par un 

potentiomètre linéaire qui permettra de faire l’équilibrage initial du pont de Wheatstone. 

L’équilibrage consiste à ramener ∆𝐸𝑚 à zéro (∆𝐸𝑚 = 0) lorsqu’il n’y a aucune déformation subite 

par la jauge J1.  
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Figure 2.6 Équilibrage du quart de pont de Wheatstone avec un potentiomètre 
 

En effet, malgré que les résistances J1, R2, R3, R4  ont les mêmes valeurs nominales théoriques, elles 

ne sont pas parfaitement identiques. Chaque résistance à sa valeur nominale qui varie généralement 

de ± 1%  Il est donc rare que le pont soit équilibré sans avoir préalablement fait des réglages. 

2.2.5 Les centrales inertielles 

Les centrales inertielles sont généralement utilisées pour estimer l’orientation d’un corps par 

rapport à un référentiel bien défini. Elles sont constituées généralement d’unités de mesure qui 

utilisent des gyroscopes, des accéléromètres et des magnétomètres pour mesurer des mouvements 

linéaires et angulaires. L’accéléromètre mesure les accélérations linéaires le long des 3 axes 

cartésiens X, Y et Z. Le gyroscope mesure la vitesse angulaire le long des 3 axes cartésiens X, Y 

et Z. Le magnétomètre calcule la direction dans laquelle le capteur fait face par rapport au nord 

magnétique. Les centrales inertielles qui disposent d’un accéléromètre à 3 axes, d’un gyroscope à 

3 axes et d’un magnétomètre à 3 axes sont appelées des centrales inertielles à 9 DDL. 

Cependant, chacune des unités de mesure des centrales inertielles a des problèmes distincts. 

L’accéléromètre a tendance à être bruyant. Le gyroscope accumule les erreurs au fil du temps 

générant une dérive inévitable. Les mesures du magnétomètre sont soumises à une distorsion ayant 

deux sources : 1. Les distorsions dites « hard iron » créées par des objets qui produisent un champ 

magnétique. 2. Les distorsions dites « soft iron » considérées comme des déviations ou des 

modifications du champ magnétique existant [55].  
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Plusieurs techniques de fusion de capteurs ont été développées pour générer une estimation de 

l’orientation, cependant, cela sort du cadre de ce mémoire et seules les lectures brutes de 

l’accéléromètre et du gyroscope seront utilisées. Il y a eu plusieurs implémentations de la 

reconnaissance d’intention de mouvements qui ont été complétées par l’utilisation de données 

provenant de mesures de centrales inertielles [56]. 

2.3 Les réseaux de neurones artificiels 

Les réseaux de neurones artificiels sont des systèmes informatiques composés d’éléments de 

traitement adaptatif interconnectés communément appelés neurones. Ces neurones utilisent un 

réseau de fonctions mathématiques pour comprendre et traduire une entrée de données d’une forme 

en une sortie souhaitée [57]. Le concept des réseaux de neurones artificiels a été inspiré par la 

biologie humaine et de la manière dont les neurones du cerveau humain fonctionnent ensemble 

pour comprendre informations provenant des sens humains [57]. Comme présenter sur la Figure 

2.7, un ensemble d’entrées du neurone artificiel (synapses) avec des poids différents (dendrites) 

qui s’additionnent (corps cellulaire.) Après la somme pondérée, le résultat passe par une fonction 

d’activation, excitant ainsi le neurone (déclenchement un potentiel d’action à travers l’axone). 

 

Figure 2.7 Neurone artificiel avec les entrées (x1…xn), les poids (w1…wn), le biais (b). La sortie y 
du neurone est le résultat de la fonction d’activation appliquée à la somme pondérée de toutes 

entrées et du biais. Figure adaptée de [58].  

Le premier réseau de neurones artificiels a été présenté en 1943, par Warren McCulloch, un 

neurophysiologiste, et Walter Pitts, un mathématicien [59]. Ces derniers ont écrit un article sur le 

fonctionnement des neurones et ont modélisé un simple réseau de neurones avec des circuits 

électriques. 
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En 1957, les travaux de Rosenblatt [60] ont abouti à un réseau à deux couches, le perceptron, qui 

était capable d’apprendre certaines classifications en ajustant les poids de connexion, mais 

présentait également certaines limitations. En effet, le perceptron était encore un classificateur 

linéaire qui pouvait apprendre que des classes linéairement séparables. 

Il a fallu attendre les années 1980, où l’algorithme de rétropropagation [61] a été développé, ce qui 

a permis d’entraîner des perceptrons à plusieurs couches Figure 2.8.  

Lorsque les neurones de la couche d’entrée sont activés par une information, cette information est 

traitée couche par couche jusqu’à ce que finalement la couche de sortie soit activée. Les perceptrons 

multicouches sont constitués de 3 parties essentielles [62]: 

• Couche d’entrée : pour alimenter le modèle d’entrée dans le reste du réseau. 

• Couches cachées : pour effectuer les calculs et les transformations mathématiques. Les 

perceptrons trouvés dans les MLP ont typiquement des fonctions d’activation non linéaires 

• Couche de sorties : pour fournir les résultats du calcul. 

 

Figure 2.8 Perceptrons multicouches. Dans cette architecture la couche d’entrée comprend 3 
neurones, la couche cachée deux neurones et la sortie un neurone pour un classificateur binaire. 

Figure adaptée de [62]. 
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2.3.1 La rétropropagation 

La rétropropagation fait référence à l’algorithme de calcul du gradient des paramètres des réseaux 

de neurones. La méthode parcourt le réseau dans le sens inverse, de la couche de sortie à la couche 

d’entrée, selon la règle de la dérivation en chaîne [61]. L’algorithme enregistre toutes les variables 

intermédiaires (dérivées partielles) requises lors du calcul du gradient par rapport à certains 

paramètres. 

Pour les perceptrons multicouches, les données en entrée du réseau de neurones passent 

séquentiellement à travers toutes les couches du réseau jusqu’à la sortie. Cette étape est appelée la 

passe avant, et est à l’origine du nom donné à cette architecture : « réseau de neurones feed-

forward » (FFNN). Un exemple de calcul du gradient est donné dans l’Annexe A. 

2.3.2 Les fonctions d’activations 

Une fonction d’activation dans un réseau de neurones peut être définie comme une fonction de 

transfert dont la somme pondérée de l’entrée est transformée en une sortie d’un ou de plusieurs 

nœuds dans une couche du réseau [58]. Le choix de la fonction d’activation dans la couche cachée 

est important, car elle contrôle la capacité du réseau à apprendre les caractéristiques de l’ensemble 

des données d’apprentissage.  

Les réseaux de neurones étant entraînés par l’algorithme de rétropropagation, il est donc requis que 

les fonctions d’activations soient différentiables, ce qui signifie que la dérivée du premier ordre 

peut être calculée pour une certaine valeur d’entrée. 

Le Tableau 2.3 présente les trois fonctions d’activation les plus utilisées dans la littérature. 

Tableau 2.3 Formules et représentations des fonctions d’activations les plus courantes [58] 

Figures Description mathématique 

 

Sigmoïde : 

𝑔(𝑥) =  
1

1 + 𝑒−𝑥 ∈ (0,1) 
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Tangente hyperbolique : 

𝑔(𝑥) = tanh(𝑥) ∈ (−1,1) 

 

Linéaire rectifiée : 

𝑔(𝑥) = max(0, 𝑥) ∈ [0,∞) 

 

La fonction d’activation linéaire rectifiée, ou fonction d’activation ReLU, est peut-être la fonction 

la plus couramment utilisée pour les couches cachées [63]. La fonction d’activation ReLU est 

populaire pour les architectures MLP et CNN. Cependant, les réseaux de neurones récurrents 

utilisent couramment les fonctions d’activations Tangente hyperbolique ou sigmoïdes.  

2.3.3 Les réseaux de neurones convolutifs 

Les réseaux de neurones convolutifs ou encore CNN, sont un type spécialisé de réseaux de 

neurones qui sont utilisés pour le traitement des données qui ont une topologie similaire à celle 

d’une grille [58]. Cette topologie est retrouvée dans les données de séries chronologiques, qui 

peuvent être considérées comme une grille 1D prenant des échantillons à intervalles de temps 

réguliers, et les données d’image, qui peuvent être considérées comme une grille 2D de pixels. Les 

progrès dans le domaine de la vision par ordinateur avec l’apprentissage profond ont été construits 

et perfectionnés principalement sur la base des réseaux de neurones convolutifs. 

L’avantage de l’utilisation des CNN est qu’ils peuvent apprendre directement une représentation 

interne des données de la série chronologique sans le besoin d’extracteurs de caractéristiques 

conçus manuellement par l’homme [58]. 

Les réseaux de neurones convolutifs sont généralement composés de 3 couches [64]: 
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• Couche de convolution : La couche de convolution (CONV) utilise des filtres qui 

effectuent des opérations de convolution sur les données en entrée par rapport à ses 

dimensions et les passe à la couche suivante. Les poids de la couche précédente sont donc 

reliés aux poids des couches suivantes. Les hyperparamètres incluent la taille du filtre 𝑓 et 

le pas 𝑠. La sortie résultante est appelée carte de caractéristiques ou carte d’activations. 

• Couche de Pooling : La couche de mise en commun (POOL) est une opération de sous-

échantillonnage, généralement appliquée après une couche de convolution, qui effectue 

une certaine invariance spatiale. En particulier, les « pooling » max et moyen sont des 

types particuliers de regroupement où les valeurs maximale et moyenne sont 

respectivement prises. 

• Couche connectée : La couche entièrement connectée (FC) fonctionne sur une entrée 

vectorielle où chaque entrée est connectée à tous les neurones. Si elles sont présentes, les 

couches FC se trouvent généralement vers la fin des architectures CNN et peuvent être 

utilisées pour optimiser des objectifs tels que les scores de classe.  

Cependant, dans ce mémoire les réseaux de convolutions 1D présentés à la Figure 2.9 seront 

présentés, car les données utilisées (signaux de jauges de déformation et signaux provenant de 

centrales inertielles) pour l’application souhaitée consistent en un ensemble de vecteurs d’entrées 

unidimensionnels.  
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Figure 2.9 Représentation graphique d’un réseau de neurones convolutifs 1D. L’entrée est 
alimentée à travers une série de couches de convolution suivies de couches de « Pooling », pour 
former des structures arbitrairement profondes. N représente le nombre de filtres dans chaque 
couche. L’opération finale consiste à une vectorisation permettant d’alimenter en général un 

perceptron multicouche. 

 

L’exemple présenté à la Figure 2.10 présente le principe de fonctionnement des réseaux de 

neurones convolutifs. 

 

Figure 2.10 Exemple d’opérations de convolution et de « max pooling » 1D. Un filtre est 
appliqué sur le vecteur d’entrée avec un pas de 1. Cela signifie que le filtre se déplace sur tout le 

vecteur d’entrée avec un pas de 𝑠 = 1. Ensuite, une opération vectorielle est faite entre les 
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éléments du filtre et les éléments du vecteur d’entrée : ici une somme pondérée. Après l’opération 
de convolution, l’opération de « max pooling » choisit la valeur maximale entre deux valeurs à 

partir d’un filtre qui parcourt tous les éléments avec un pas de 2. 

2.3.4 Les réseaux de neurones récurrents 

Les réseaux de neurones récurrents, ou RNN sont une famille de réseaux de neurones capable de 

traiter des données séquentielles. Les RNN sont capables de prendre en compte le contexte en 

introduisant des variables d’état pour stocker les informations passées, ainsi que les entrées 

actuelles, afin de déterminer les sorties [58]. Un réseau de neurones récurrent peut être considéré 

comme plusieurs copies du même réseau, comme illustré à la voir Figure 2.11, transmettant 

l’information contextuelle apprise pour mettre à jour les poids correspondants qui représentent ses 

états internes. 

 

Figure 2.11 Illustration d’un réseau de neurones récurrent (RNN). À gauche, l’architecture du 
réseau est représentée avec les flèches représentant les connexions récurrentes. Sur le côté droit, 

ces connexions sont représentées dans l’espace, où chaque pas de temps forme une nouvelle 
couche. Figure adaptée de [65]. 

Un RNN peut soit être utilisé pour classer une séquence entière en une seule classe, pour générer 

une nouvelle séquence en sortie, par ex. traduire un texte, mais aussi pour créer une séquence à 

partir d’une seule entrée comme  pour le sous-titrage automatique  d’images par l’identification de 

son contenu [66]. Dans ce mémoire, la première architecture montrée, Figure 2.12, qui consiste à 

classer une séquence entière en une seule classe sera utilisée. Notre entrée sera des données 

temporelles provenant des capteurs et la sortie sera une classe de mouvement. Les classes de 

mouvement sont décrites à la section 5.3.3. 
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Figure 2.12 LSTM architecture « many-to-one ». Analyse de séquence de mouvement : à chaque 
pas de temps la séquence de mouvement est évaluée par une cellule LSTM. Le résultat de la 

couche est associé aux classes possibles, et est calculé après chaque pas. Figure adaptée de [66]. 

 

Cependant, les RNN standard ont de la difficulté à apprendre des dépendances contextuelles à long 

terme. En effet, les RNN sont entraînés en utilisant une version adaptée de l’algorithme de 

rétropropagation: la rétropropagation à travers le temps. À mesure que les calculs de gradient 

remontent dans le temps, il y a une tendance à avoir des valeurs de plus en plus élevées ou basses 

du gradient, ce qui conduit à une explosion ou une dégradation du gradient [66]. 

La mémoire à long court terme (LSTM) est une architecture RNN qui résout le problème de 

l’explosion et de la dégradation du gradient. La couche cachée LSTM est composée de blocs de 

mémoire Figure 2.13, qui sont des sous-réseaux autoconnectés contenant plusieurs cellules 

internes. Grâce à des portes multiplicatives, la cellule est capable de stocker et d’accéder à des 

informations sur une longue période, Figure 2.14. En d’autres termes, LSTM transporte les données 

de diverses étapes à travers toutes les étapes et chaque cellule est capable d’inclure et de supprimer 

des informations de ces données tout en traitant une entrée séquentielle [67].  
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Figure 2.13 Cellule LSTM. Ct−1Représente l’étape précédente. ht−1 L’état de la sortie 
précédente,  xt représente l’échantillon de la séquence au temps t, Ct représente l’état de la 

cellule mis à jour et ht le résultat. Nous avons aussi représenté les portes : la porte d’oublie ft ,la 
porte d’entrée it et la porte de sortie ot [65]. 

 

 

Figure 2.14 Cellules LSTM à travers le temps. Chaque étape de cellule reçoit un échantillon de la 
séquence x de la couche d’entrée et envoie un état de cellule mis à jour et la valeur de sortie h à 
l’étape suivante. Chaque pas de temps envoie également la valeur h à la couche de sortie [65]. 

 

Les étapes de calculs effectués par les cellules LSTM à travers le temps sont présentées. Les valeurs 

W (poids) et b (biais) représentent les paramètres du réseau. La cellule LSTM comprend une porte 

d’oublie 𝑓𝑡 pour oublier les informations qui sont plus nécessaires [65], [66] : 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) ( 2.2) 
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Une porte d’entrée [65], [66] pour enregistrer l’information (Calculé comme 𝐶𝑡  provenant de 

l’étape 𝑥𝑡  et l’étape précédente ℎ𝑡−1 qui sera nécessaire : 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) ( 2.3) 

Une porte de sortie 𝑜𝑡  pour contrôler la sortie [65], [66] : 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) ( 2.4) 

Les nouvelles valeurs sont mises à jour suivant ces équations [65], [66] : 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 ( 2.5) 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) ( 2.6) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) ( 2.7) 

 

2.4 L’apprentissage 

2.4.1 Les fonctions coût 

Les réseaux de neurones sont entraînés à l’aide d’un processus d’optimisation qui nécessite de 

calculer l’erreur du modèle par une fonction coût [64]. En général, ces fonctions peuvent être 

classées en deux catégories selon le problème d’apprentissage :  régression ou classification [58]. 

Les méthodes de régression sont utilisées pour prédire valeurs réelles. Les fonctions coût utilisées 

pour ces problèmes sont généralement basées sur une mesure de la distance entre les prédictions et 

les observations réelles. Une des fonctions coût les plus utilisées pour les problèmes de régression 

est l’erreur moyenne quadratique (MSE). Elle est évaluée selon la formule la suivante [68] :  

𝑀𝑆𝐸 =  
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖

𝑛  
( 2.8) 

Où 𝑦𝑖 représente la valeur cible et 𝑦̂𝑖 représente la valeur prédite pour l’échantillon 𝑖 et 𝑛 le nombre 

total d’échantillons. 
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En classification, nous essayons de prédire une valeur d’un ensemble de valeurs catégoriques 

finies. Les fonctions coût pour ces problèmes sont généralement basées sur une mesure d’entropie. 

Deux fonctions sont généralement utilisées : entropie croisée binaire ou catégorielle. 

La première est utilisée pour des problèmes de classification entre une ou deux classes. La seconde 

est utilisée pour des problèmes de classification ou le nombre de classes est supérieur à 2. 

La fonction binaire de coût d’entropie (ℒ) croisée est présentée, avec 𝑦̂ représentant la sortie du 

réseau et 𝑦 la valeur cible [68].  

ℒ(𝑦̂, 𝑦) =  −[𝑦𝑙𝑜𝑔(𝑦̂) + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦̂)] ( 2.9) 

où 𝑦̂ peut-être vu comme la probabilité que la sortie soit 1, et (1 − 𝑦̂) la probabilité que la sortie 

soit 0. 

Les problèmes où le nombre de classes est supérieur à deux sont appelés des problèmes multiclasse. 

Pour les problèmes multiclasse, il est important d’encoder les sorties sous une forme vectorielle 

binaire dont le nombre d’éléments correspond au nombre de classes 𝑘. Par exemple, pour un 

problème de 3 classes, l’encodage pour élément appartenant à la deuxième classe serait le suivant 

𝑦2 =  {0, 1,0}. Cette notation est communément appelée la notation « one hot ». La fonction coût  

(ℒ) pour un problème de classification multi-classe peut être définie comme suit [68]: 

ℒ(𝑦̂, 𝑦) =  − ∑ 𝑦𝑘log (𝑦̂𝑘)
𝐾

𝐾=1

 ( 2.10) 

où 𝑦̂𝑘 est le 𝑘𝑖è𝑚𝑒  nœud de sortie et 𝑙𝑜𝑔 indique le logarithme népérien. La sortie représente une 

distribution de probabilité qu’un exemple de donnée appartienne à chacune des classes.  

Après avoir déterminé notre fonction coût ℒ, le problème d’optimisation peut être résumé comme 

étant la recherche des paramètres permettant de minimiser l’erreur calculée par la fonction coût par 

rapport à l’ensemble de données est notée 𝐽 et est calculée selon la formule qui suit [68]. 

𝐽 =  
1
𝑛

∑ℒ
𝑛

𝑖=1

(𝑦̂(𝑖), 𝑦̂(𝑖) ) ( 2.11) 
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où  ℒ(𝑦̂(𝑖), 𝑦̂(𝑖))  noté ℒ(𝑖) représente la valeur scalaire de la fonction coût calculée pour un exemple 

𝑖 de l’ensemble de données. Cette fonction est minimisée par rapport à tous les paramètres du 

réseau et moyennée pour tous les 𝑛 exemples. C’est ce qu’on appelle la descente de gradient par 

lots parce que l’ensemble du lot d’entraînement est utilisé pour calculer la fonction de coût.  

2.4.2 Les méthodes d’optimisation 

La descente de gradient est de loin le moyen le plus courant et le plus établi d’optimiser les 

fonctions coût des réseaux de neurones. La descente de gradient est un algorithme d’optimisation 

qui trouve l’ensemble des paramètres d’une fonction coût permettant d’atteindre la valeur minimale 

cette fonction [58]. 

Il existe trois variantes de descente de gradient qui diffèrent par la quantité de données que nous 

utilisons pour calculer le gradient de la fonction objectif. En fonction de la quantité de données, 

nous faisons un compromis entre la précision de la mise à jour des paramètres et le temps nécessaire 

pour effectuer une mise à jour. 

2.4.2.1 Descente de Gradient par lot « batch gradient descent » 

La descente de gradient par lot calcule le gradient de la fonction coût par rapport à aux paramètres 

de l’ensemble des données d’entraînement. Il faut donc calculer les gradients de l’ensemble de 

données d’entraînement pour effectuer une seule mise à jour des paramètres. Ainsi, la Descente de 

Gradient par lots peut être très lente et est insolvable pour les ensembles de données qui ne tiennent 

pas en mémoire. 

2.4.2.2 Descente de Gradient stochastique « stochastic gradient descent » 

La Descente de Gradient Stochastique (SGD) en revanche effectue une mise à jour des paramètres 

pour chaque exemple d’entraînement. De ce fait, elle est généralement plus rapide que la descente 

de gradient par lot. Cependant, la descente de gradient stochastique effectue des mises à jour 

fréquentes avec une variance élevée ce qui entraîne une forte fluctuation de la fonction objective. 

2.4.2.3 Descente de Gradient par mini-lot « mini-batch gradient descent » 

La Descente de Gradient par mini-lot prend enfin le meilleur des deux algorithmes précédents et 

effectue une mise à jour pour chaque mini-lot. Ainsi, cet algorithme permet de: 
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1. Réduire la variance des mises à jour des paramètres, ce qui peut conduire à une 

convergence plus stable. 

2. Utiliser des opérations matricielles hautement optimisées pour accélérer l’apprentissage 

des réseaux de neurones profonds. 

Dans le cas de la Descente de Gradient par lot, la fonction coût 𝐽𝑚𝑏  est calculée selon la formule 

suivante : 

𝐽𝑚𝑏 =
1
𝐵 ∑ℒ(𝑖)

𝐵

𝑖=1

 ( 2.12) 

où 𝐵 représente le nombre d’exemples dans le lot et 𝑚𝑏 le terme anglais pour « mini-batch ». ℒ(𝑖) 

représente la valeur scalaire de la fonction coût calculée pour un exemple 𝑖 de l’ensemble de 

données 

Les méthodes classiques de Descente de Gradient ne garantissent pas nécessairement une 

convergence vers un minimum global. Des méthodes plus avancées telles que RMSprop [69] et 

Adagrad [70] et Adam ont été proposés [71]. 

2.4.2.4 L’algorithme d’optimisation Adam 

L’estimation du moment adaptatif (Adam) [71] est une autre méthode qui calcule les taux 

d’apprentissage adaptatif pour chaque paramètre. Cette méthode s’est avérée être un meilleur 

optimiseur car il tente de combiner les avantages des deux algorithmes RMSprop et Adagrad. 

Pour cela, les estimations 𝑚𝑡 et 𝑣𝑡 des premiers et deuxièmes moments bruts des gradients noté 𝑔𝑡  

sont calculés conformément aux équations [71]: 

𝑚𝑡 =  𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 ( 2.13) 

𝑣𝑡 =  𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 ( 2.14) 

Ces équations consistent à effectuer des moyennes mobiles exponentielles du Gradient, 𝑚𝑡, et du 

gradient au carré, 𝑣𝑡. Le premier est une estimation du 1er moment (la moyenne) et le second est 

le 2e moment brut (la variance décentrée). Les hyperparamètres 𝛽1, 𝛽2  ∈  [0,1) Contrôlent les taux 

de décroissance exponentielle de chaque moyenne mobile. Cependant, comme ces vecteurs sont 
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initialisés à zéro, ils sont biaisés vers zéro. L’algorithme utilise des termes de correction de biais, 

présentés dans les équations [71] :  

𝑚̂𝑡 =  
𝑚𝑡

1 − 𝛽1
𝑡 ( 2.15) 

𝑣̂𝑡 =  
𝑣𝑡

1 − 𝛽2
𝑡  ( 2.16) 

Ils les utilisent ensuite pour mettre à jour les paramètres, ce qui donne la règle de mise à jour de 

l’optimiseur Adam [71]: 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣̂𝑡 + 𝜖
𝑚̂𝑡 ( 2.17) 

Les auteurs [71] proposent les valeurs par défaut suivantes 𝛼 = 0.001, 𝛽1 = 0.9, 𝛽2 =

0.999 𝑒𝑡 𝜖 = 10−8, ils montrent empiriquement qu’Adam se compare favorablement à d’autres 

algorithmes de méthode d’apprentissage adaptatif. 

2.5 Les méthodes de régularisation 

La différence entre l’erreur faite sur l’ensemble d’entraînement et l’erreur faite sur l’ensemble de 

tests peut être considérée comme l’erreur de généralisation. Le but des méthodes de régularisation 

est de réduire cette erreur et de ce fait d’améliorer la capacité de généralisation des réseaux 

neurones. Il existe plusieurs stratégies pour le réduire l’erreur de généralisation [58], [72]. 

2.5.1.1 Régularisation L2 

La régularisation L2 est une fonction dite de « perte de poids ». On la retrouve dans la littérature 

sous les appellations : régularisation Ridge, ou régularisation Tikhonov. Elle consiste à ajouter un 

terme de pénalité 𝜆 à la fonction coût 𝐽𝐿2 proportionnellement à la taille des poids dans le modèle 

[68]. 

𝐽𝐿2 = 𝐽 + 
𝜆
2

||𝑊||2 ( 2.18) 
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𝐽𝐿2 = 𝐽 + 
𝜆
2 ∑ |𝑊𝑖𝑗|2

𝑖𝑗

 ( 2.19) 

𝐽𝐿2 = 𝐽 + 
𝜆
2 𝑊𝑇𝑊 ( 2.20) 

La fonction de coût 𝐽𝐿2 est minimisée par rapport à tous les poids 𝑊 et biais du réseau. 𝑊𝑖𝑗 

représente les éléments de la matrice de poids 𝑊. En raison de la pénalité qui augmentera le coût 

si les poids sont trop grands, cette méthode de régularisation forcera les poids à être petits. Le 

paramètre 𝜆 de régularisation est donc un autre hyperparamètre à régler. 

2.5.1.2 « Dropout » 

C’est une méthode de régularisation nécessitant une faible puissance de calcul et efficace pour 

réduire l’erreur sur l’apprentissage et de généralisation dans les réseaux de neurones profonds.  Un 

seul modèle peut être utilisé pour simuler un grand nombre d’architectures de réseau de neurones 

différentes en supprimant de manière aléatoire (paramètre de probabilité) des neurones pendant 

l’entraînement [73]. 

2.5.1.3 Arrêt précoce « Early Stopping » 

Une pratique conventionnelle en apprentissage machine est de diviser l’ensemble de données en 3 

ensembles distincts : l’entraînement, la validation et le test. Le but étant de de pouvoir utiliser la 

plus grande partie des données pour entraîner le modèle et de garder un plus petit échantillon pour 

suivre les performances du réseau sur de nouvelles données, par exemple sur l’ensemble de 

validation. 

Il est important d’entraîner le réseau suffisamment longtemps pour qu’il soit capable d’apprendre 

la relation entre les entrées et les sorties, mais de ne pas entraîner le modèle trop longtemps au 

point d’apprendre des caractéristiques spécifiques aux données d’entraînement seulement. 

Suivant cette logique, l’arrêt précoce « early stopping » consiste à entraîner l’algorithme sur 

l’ensemble des données d’entraînement, mais à arrêter l’entraînement au moment où les 

performances sur l’ensemble de données de validation commencent à se dégrader. Cette approche 

est simple, efficace et largement utilisée pour entraîner les réseaux de neurones profonds.  Il est 

facile d’utiliser l’arrêt précoce sans endommager la dynamique d’apprentissage. Ceci est à l’opposé 
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du « dropout » ou la régularisation L2. En particulier pour le dernier, il faut faire attention à ne pas 

utiliser des valeurs trop grandes du paramètre 𝜆. En effet, un tel cas pourrait conduire le gradient à 

être bloqué dans un minimum local et l’empêcher d’atteindre le minimum global. 

2.5.1.4 « Data augmentation » 

Pour les modèles d’apprentissages profonds, une quantité insuffisante de données d’apprentissage 

peut conduire le modèle à apprendre des caractéristiques spécifiques aux données d’entraînement, 

ce qui conduit le modèle à avoir une mauvaise capacité de généralisation. Le nombre de données 

d’apprentissage est proportionnel aux nombres de paramètres que peut apprendre le modèle. 

Une technique utilisée pour résoudre le problème du nombre insuffisant de données consiste à 

appliquer différentes transformations sur les données disponibles pour synthétiser de nouvelles 

données. Cette approche consistant à synthétiser de nouvelles données à partir des données 

disponibles est appelée « augmentation de données ». Pour les images, l’augmentation de données 

peut se faire en appliquant des transformations géométriques (rotation, mise à l’échelle, translation, 

etc.) aux données [74]. Pour des données temporelles, de nouveaux signaux peuvent être générés 

en rajoutant du bruit gaussien dans le signal de base [23]. 

2.6 Mesure de la performance de l’algorithme de classification 

L’évaluation des algorithmes d’apprentissage machine est une partie essentielle de tout projet. Un 

mauvais choix des métriques pour évaluer son modèle peut vous induire en erreur sur les 

performances attendues de votre modèle [75].Ici, le mot « performance » est utilisé pour désigner 

la capacité du modèle à attribuer à un mouvement la classe de mouvement correspondante.   

La précision de la classification est la métrique la plus utilisée pour mesurer les performances des 

modèles. Elle est calculée selon la formule suivante [76]: 

𝑃𝑟é𝑐𝑖𝑠𝑖𝑜𝑛 𝑑𝑒 𝑙𝑎 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  
𝑁𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑝𝑟é𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑠

𝑁𝑜𝑚𝑏𝑟𝑒 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒 𝑝𝑟é𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠  ( 2.21) 

Cette mesure de performance fonctionne bien lorsque les données sont balancées : c’est-à-dire que 

les nombres de données appartenant à chaque classe sont égaux. Dans le cadre de cette recherche, 

les classes sont balancées. Prenons l’exemple d’une classification binaire avec des données non 

balancées, où 95% des données d’entraînement sont de la classe A et 5% de la classe B. Ainsi, le 
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modèle peut facilement obtenir une précision de classification de 95% en prédisant simplement 

que chaque échantillon d’entraînement appartient à la classe A. 

Ainsi, on fait souvent recours à une matrice de confusion, Tableau 2.4 qui nous permet de décrire 

la performance complète de notre modèle [76] . 

Tableau 2.4 Matrice de confusion pour une classification binaire 

Matrice de confusion 
Classes prédites 

Positif (P) Négatif (N) 

Classes 

cibles 

Positif (P) VP FN 

Négatif (N) FP VN 

Ce tableau révèle 4 importants termes : 

• Vrai Positif (VP) : L’algorithme a prédit OUI et la sortie réelle est également OUI. 

• Vrai Négatif (VN): L’algorithme a prédit NON et la sortie réelle est également NON. 

• Faux Positif (FP): L’algorithme a prédit OUI et la sortie réelle est également NON. 

• Faux négatif (FN): L’algorithme a prédit NON et la sortie réelle est également OUI 

𝑃𝑟é𝑐𝑖𝑠𝑖𝑜𝑛 𝑑𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  
𝑉𝑃 + 𝑉𝑁

𝑉𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝐹𝑃 ( 2.22) 

Une mesure plus avancée est le score F1 qui est la moyenne harmonique entre la précision et le 

rappel. La plage pour le score F1 est [0, 1]. Il vous indique la précision de votre classificateur 

(combien d’instances il classe correctement), ainsi que sa robustesse (il ne manque pas un nombre 

important d’instances). Le score F1 est calculé selon l’équation qui suit [76] 

𝐹1 = 2 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑎𝑝𝑝𝑒𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑎𝑝𝑝𝑒𝑙 ( 2.23) 
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Cependant, le score F1 présente certains inconvénients, en particulier lorsque les données sont non 

balancées. Une mesure qui est plus robuste face à des classes non balancées est le Coefficient de 

Corrélation de Matthew (MCC)  qui est calculé comme suit [75]. 

𝑀𝐶𝐶 = 
𝑉𝑃 ×  𝑉𝑁 − 𝐹𝑃 × 𝐹𝑁

√(VP +  FP)(VP +  FN)(VN +  FP)(VN +  FN)
 ( 2.24) 

Le MCC sera 1 pour un classificateur parfait et 0 pour un classificateur aléatoire. Un classificateur 

inverse aura un MCC de -1(dans ce cas il faut juste inverser les prédictions pour obtenir le 

classificateur parfait). Ce score peut être appliqué pour les problèmes de classification multiclasse 

cependant, toutes les classes doivent être présentes dans la sortie de classification, sinon la mesure 

devient indéfinie [75]. 

Pour résumer, la performance du modèle de classification est evaluée par les métriques suivantes : 
• La précision de classification qui sera présenté dans une matrice de confusion 
• Le MCC du modèle 

La précision sera mesurée pour chacune des 10 classes de mouvement et globalement pour les 
différents modèles. Le MCC sera mesuré pour les différents modèles pour valider la précision de 
classification. En effet, un modèle ayant une précision de classification élevée devrait avoir un 
MCC proche de 1. 
Le Tableau 2.5 fait un résumé des critères de conception.
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Tableau 2.5 Résumé des critères de conception 

No Texte de référence Fonction Critère 

1.0 

Développer un système de mesure 
permettant de déterminer les 
intentions de mouvement du membre 
supérieur. 

  

1.1 Utiliser des jauges de déformations 

Mesurer des déformations multiaxiales de la 
peau 

Enregistrer les déformations selon 2 axes. 
 

Établir un contact conforme avec la peau 
pendant l'utilisation Ne pas se décoller de la peau durant 24h. 

1.2 Utiliser des centrales inertielles 
 

Acquérir les accélérations linéaires 
Enregistrer les accélérations linéaires du 
membre selon 3 axes cartésiens (ax, ay, az) 
à une fréquence de 100Hz 

Acquérir les vitesses angulaires 
Enregistrer les vitesses angulaires du 
membre selon 3 axes cartésiens (ax, ay, az) 
à une fréquence de 100Hz 

1.3 Faire un circuit d'acquisition Acquérir et traiter les données provenant des 
différents capteurs. 

Être capable d’acquérir les signaux 
provenant des jauges de déformation et les 
signaux provenant des centrales inertielles à 
une fréquence d'acquisition de 20Hz-200Hz 

1.4 Avoir une architecture de 
communication sans-fil 

Permettre aux capteurs de communiquer 
sans-fil et d’enregistrer les données sur 
l’ordinateur 

Avoir une fréquence de transmission de 100 
Hz-250Hz 

1.5 Avoir un système portable Permettre une utilisation dans les activités 
quotidiennes 

• Avoir une masse < 500g / capteur 
• Avoir une taille < 15cm  x15 cm x 5 cm 

1.6 Avoir un système robuste 
Permettre d’utiliser le système de façon 
répéter sans que les jauges de déformation ou 
les connexions se brisent 

Ne pas briser à la suite des mouvements de 
l'utilisateur 
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2.0 
Développer un algorithme intelligent 
permettant de détecter des intentions 
de mouvement. 

  

2.1 Utiliser un algorithme 
d’apprentissage profond 

Permettre de prendre en compte la nature 
temporelle des données 

• Précision de classification 
• MCC du modèle 

Permettre d’extraire les caractéristiques 
importantes des signaux 

• Précision de classification 
• MCC du modèle 

2.2 Reconnaitre l’intention de 
mouvement 

Être capable de distinguer différents 
mouvements du membre supérieur 

• Précision de classification 
• MCC du modèle 

2.3 Avoir un algorithme facile à 
implémenter sur un microcontrôleur Être embarqué Pouvoir être implémenter sur un 

microcontrôleur ESP32 HUZZAH 32 
*MCC : Coefficient de Corrélation de Matthew
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CHAPITRE 3 JUSTIFICATION DU PROJET DE RECHERCHE 

3.1 Résumé de la problématique 

Les différentes problématiques reliées à l’utilisation des capteurs sEMG ont motivé la recherche 

d’alternatives. Cependant les solutions proposées dans la littérature présentent deux désavantages 

importants : 

• Les techniques de fabrication sont hautement spécialisées ce qui rend difficile la production 

de masse. 

• L’utilisation des matériaux flexibles est peu commune et l’intégration de la miniaturisation 

de l’électronique est difficile. 

Les alternatives proposées pour la majorité, sont utilisés dans un environnement contrôlé et non 

dans des applications réelles. Dans cette optique, ce travail de maîtrise met à l’avant la possibilité 

d’utiliser des jauges de déformation pour développer un capteur capable de détecter les contractions 

musculaires au lieu des sEMG. 

À notre connaissance, l’état de l’art révèle deux problèmes majeurs : 

1. Les problèmes courants des sEMG ont été résolus par une première preuve de concept de 

bracelet utilisant la déformation. Mais celui-ci avait encore des limites. 

2. La combinaison de jauges de déformation et d’IMU n’a jamais été étudiée pour détecter 

l’intention de mouvement humain. 

3.2 Objectif général 

Dans ce contexte, l’objectif de cette étude est de développer un système portable pour identifier les 

intentions de mouvement en combinant des jauges de déformation et des centrales inertielles. 

La principale hypothèse de recherche est la suivante : 

• La combinaison entre les jauges de déformation et les IMUS améliorera la capacité de 

détecter l’intention de mouvement des membres supérieurs. 
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3.3 Objectifs spécifiques 

L’objectif général de cette étude peut se diviser en trois objectifs spécifiques (OS). 

• OS1 : Développer un capteur à base de jauges de déformation pour mesurer les contractions 

musculaires. 

• OS2 : Développer un système de centrale inertielle pour mesurer les accélérations linéaires 

et les vitesses angulaires de l’avant-bras et du poignet. 

• OS3: Développer un algorithme pour détecter des intentions de mouvement. 

• OS4: Valider le fonctionnement du système intégré. 
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CHAPITRE 4 MÉTHODOLOGIE 

La méthodologie présentée dans cette section est complémentaire à celle présentée dans le chapitre 

5. Cette section a pour objectif de présenter de l’information additionnelle pertinente à l’étude. 

Aussi, une méthodologie supplémentaire sur l’implémentation d’un algorithme d’apprentissage 

profond pour la classification des mouvements du membre supérieur y est également présentée.  

4.1 Conception du capteur utilisant une centrale inertielle  

Cette section présente le système développé pour suivre en temps réel l’accélération linéaire et la 

vitesse angulaire du membre supérieur. Le système développé utilise un capteur commercial à 

faible coût intégrant un accéléromètre, un gyroscope et un magnétomètre. 

4.1.1 Choix de la centrale inertielle 

Les IMUs permettent d’enregistrer des données cinématiques. Trois IMUs, Figure 4.1, ont été 

testées dans le cadre du projet. À savoir le modèle Fermion de 10 DDL de DfRobot, et les deux 

modèles à 9DDL de Adafruit que sont le BNO055 et le NXP. 

   

Figure 4.1 Les différentes centrales inertielles testées dans le cadre du projet. À gauche, la 
centrale inertielle à 10 DDL de DfRobot. Au milieu, la centrale inertielle BNO055 à 9 DDL de 

Adafruit. À droite, la centrale inertielle Fermion de 9 DDL de Adafruit. 

Les tests effectués avec ce capteur ont permis d’en sélectionner un. Les critères qui ont été utilisés 

sont les suivants : 

1. La tolérance au bruit de l’accéléromètre 

2. La dérive du gyroscope 

3. La disponibilité de librairies permettant de faciliter l’implémentation et l’acquisition des 

données. 
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4. La disponibilité de librairies permettant de calibrer le capteur. 

Parmi ces capteurs, le capteur qui a été retenu est le BNO055. En effet, la centrale inertielle 

BNO055 de 9DOF est basée sur le capteur intelligent d’orientation absolue de Bosh. Il intègre un 

accéléromètre triaxial 14 bits, un gyroscope triaxial 16 bits avec une plage de ± 2000 degrés par 

seconde, un géomagnétique triaxial et un microcontrôleur cortex M0+ 32 bits exécutant la fusion 

de capteurs dans une seule composante. le capteur intelligent d’orientation absolue de Bosh intègre  

un accéléromètre, un magnétomètre et un gyroscope MEMS, et en les plaçant sur une seule matrice 

avec un processeur ARM Cortex-M0 à grande vitesse, il arrive à traiter toutes les données de 

l’accéléromètre, du gyroscope, du magnétomètre puis extraire la fusion du capteur en respectant 

les exigences d’un fonctionnement en temps réel et à produire des données qui peuvent être 

utilisées par un non-expert du traitement de données cinématiques [77]. 

4.1.2 Calibration de la centrale inertielle 

Pour s’assurer que les données provenant des différents capteurs (accéléromètre, gyroscope, 

magnétomètre) du BNO055 soient correctes, il est primordial d’effectuer une calibration de ces 

capteurs. Pour ce faire, le guide de calibration fournie par MathWorks [78] a été utilisé. 

Calibration du Magnétomètre 

Avant de procéder à la calibration, il faut s’assurer que le capteur est éloigné de toute interférence 

magnétique. Ensuite, la procédure est la suivante : 

1. Tenir le capteur parallèle au sol et déplacez-le selon un schéma en forme de 8, Figure 4.2. 

2. Utiliser la fonction « readCalibrationStatus » de la librairie Open-Source fournie par 

Adafruit pour lire l'état de calibration du capteur [79]. 

3. Répéter ce processus jusqu'à ce que la valeur de calibration du magnétomètre soit « Full ». 
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Figure 4.2 Calibration de magnétomètre. Figure tirée de [78] 

Calibration de l’accéléromètre 

Pour calibrer complètement l’accéléromètre du capteur BNO055 : 

1. Placer successivement le capteur BNO055 dans les six positions stables, Figure 4.3. 

pendant quelques secondes chacune.  

2. Utiliser la fonction « readCalibrationStatus » de la librairie Open-Source fournie par 

Adafruit pour lire l'état de calibration du capteur [79]. 

3. Répéter ce processus jusqu'à ce que la valeur de calibration de l'accéléromètre soit « Full ». 

 

Figure 4.3 Calibration de l'accéléromètre. Six positions stables de références. Figure tirée de[78]  

Calibration du gyroscope 

Pour calibrer complètement le gyroscope du capteur BNO055 : 

1. Placer le capteur dans n'importe quelle position stable pendant quelques secondes. 

2. Utiliser la fonction « readCalibrationStatus » de la librairie Open-Source fournie par 

Adafruit pour lire l'état de calibration du capteur [79]. 



42 

 

3. Répéter ce processus jusqu'à ce que la valeur de calibration du gyroscope soit « Full ». 

Lorsque le processus de calibration est terminé, le code fournit des valeurs de décalage. Ces valeurs 

de décalages sont ensuite appliquées à chacun des axes du capteur. Cette méthode permet de 

conserver les valeurs de calibrations et nous évite ainsi de calibrer le capteur avant chaque 

utilisation. 

4.2 Conception du capteur utilisant des jauges de déformation 

Cette section présente de l’information additionnelle sur la conception, non incluse dans l’article, 

du capteur utilisant des jauges de déformations. 

4.2.1 Choix du type de jauges de déformation 

Différents tests ont été effectués sur différents types et tailles de jauges de déformation, Tableau 

4.1. Les tests consistaient à appliquer une déformation aux jauges et à mesurer l'intensité du signal.  

Tableau 4.1 Les différents types de jauges testées dans le cadre du projet de recherche 

 

 
 

 

Reference BF350-3AA CF120-10AA BF(BA)-120-2EB 

Résistance (Ohm) 350 120 120 

Tolérance sur la valeur 

nominale 

< 0.4 ohm < 0.4 ohm < 0.4 ohm 

Matériel de la grille Constantan Constantan Constantan 

Dimension de la grille(mm) 3.2x3.1 2.3x2.7 2.3x3.7 

Dimension du support(mm) 7.3x4.1 14x4.5 8.6x7.2 
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La jauge BF350-3AA a une résistance nominale de 350 Ohm et dimension de 7.3x4.1mm. Cette 

jauge est petite et difficile à souder, mais elle présente des avantages au niveau de la détection de 

petites déformations. La jauge CF120-10AA a une dimension adéquate pour faciliter les soudures. 

Elle a une résistance nominale de 120 Ohm et permet également de mesurer de petites 

déformations. La jauge BF(BA)-120-2EB est configuré en pont complet de Wheatstone. Cette 

jauge permet de réduire la taille du circuit d’acquisition en élimant les résistances requises pour la 

configuration en quart de pont qui est utilisée pour les jauges BF350-3AA et CF120-10AA. 

Cependant, cette jauge présente une faible variation de résistance à la déformation et la valeur de 

la résistance dérive après quelques cycles de chargement-déchargement. 

La jauge CF120-10AA a été choisie, car elle est facile à souder et elle présente une bonne réponse 

linéaire à la déformation. 

4.2.2 Matrice de jauges de déformation 

Pour arriver au système présenté dans l’article Chapitre 5, différentes itérations ont été réalisées. 

Les deux paramètres les plus importants qui ont été étudiés ont été l’orientation des jauges et le 

matériau utilisé pour établir le contact avec la peau. 

4.2.2.1 Orientation des jauges 

Les travaux de Zizoua et al [41] avaient déterminé l’orientation optimale des jauges pour le 

mouvement de flexion et extension du coude. En effet, leurs travaux ont démontré que la peau se 

déformait de 11% selon la direction verticale et 6.5% selon la direction horizontale. La déformation 

la plus grande a été mesurée selon la longueur du biceps brachii (direction verticale). Ainsi, les 

jauges ont été placées de manière que leur trame soit alignée avec cette direction.  

Une première version de bracelet de jauges de déformation a été conçue avec les jauges alignées 

verticalement comme présentée sur la Figure 4.4 et la Figure 4.5. 
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Figure 4.4 PCB flexible avec des jauges suivant une direction unique 

 

Figure 4.5 PCB flexible avec les jauges de déformation soudées suivant une direction unique 

Cependant, mesurer les déformations selon la direction horizontale permet d’avoir une information 

additionnelle sur la déformation de la peau. Cette information peut s’avérer très utile pour 

l’algorithme de classification afin de distinguer les différents mouvements. Aussi, les mouvements 

de supination et de pronation de l’avant-bras entraînent une déformation plus importante de la peau 

dans la direction horizontale. Il est donc nécessaire d’enregistrer les déformations suivant cet axe. 

Un second modèle a donc été développé et est présenté sur la Figure 4.6 et la Figure 4.7. 

 

Figure 4.6 PCB flexible avec les jauges suivant deux directions différentes 
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Figure 4.7 PCB flexible avec les jauges de déformation soudées suivant deux directions 
différentes 

4.2.2.2 Fabrication du bracelet 

Pour la fabrication du bracelet, il a été important de trouver un matériau hypoallergénique, assurant 

un bon contact avec la peau et assez flexible permettant de détecter de petites déformations. Trois 

techniques différentes ont été testées : La bande de silicone, l’impression 3D et l’utilisation de 

bandes de kinésiologie. 

4.2.2.2.1 Bande de silicone 

Cette technique a été basée sur les travaux de [41]. Elle a consisté à insérer les jauges de 

déformation dans du silicone. Le silicone dragon skin de Smooth-on (Smooth-On) a été utilisé pour 

son extrême résistance et son extensibilité. Il peut atteindre plusieurs fois sa taille et reprendre sa 

forme d'origine sans perdre ses propriétés mécaniques (allongement à la rupture : 1000%) et surtout 

peut être facilement préparée à température ambiante. 

Les étapes de la fabrication peuvent être résumées comme suit : 

1. Souder les jauges de déformation sur le PCB flexible. Un total de 6 jauges doit être soudé 
sur la structure flexible. 

2. Mélanger les parties A et B du silicone selon les instructions. Une quantité de 10g de 
chaque partie a été utilisée, Figure 4.8 (a). 

3. Verser le mélange sur une plaque en acrylique 
4. Passer avec l’applicateur de film mince pour avoir une épaisseur de couche de silicone de 

0.1mm, Figure 4.8 (c). 
5. Attendre que le silicone se solidifie puis pulvériser la surface du silicone avec du liquide 

qui favorise l’adhérence des objets, Figure 4.8 (b) 
6. Déposer le PCB flexible sur la couche mince de silicone 

https://www.smooth-on.com/
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7. Pulvériser la surface du PCB flexible avec du liquide qui favorise l’adhérence des objets 
sur le silicone, Figure 4.8(b) 

8. Préparer un deuxième mélange des parties A et B du silicone selon les instructions. Une 
quantité de 10g de chaque partie a été utilisée. Figure 4.8 (a) 

9. Passer avec l’applicateur de film mince pour avoir une épaisseur de couche de silicone de 
0.1mm, Figure 4.8 (c). 

10. Attendre que le silicone se solidifie et découper le contour pour former le bracelet de 
silicone instrumentalisé avec les jauges. 

 

Figure 4.8 (a) Silicone liquide dragon Skin 10 FAST de Smooth-On. (b) APHIX de Smooth-On : 
agent adhérant permettant de coller la majorité des matériaux sur du silicone. (c) Applicateur de 
de film réglable de 100 mm avec dispositif de préparation de film humide micrométrique 0-3500 

𝜇𝑚 de largeur. 
Le résultat obtenu est présenté sur la Figure 4.9 et 4.10. 
 

 

Figure 4.9 PCB flexible intégré dans un bracelet de silicone avec les jauges de déformations 
suivant une direction unique. La bande autour du PCB flexible a été une astuce pour ne pas avoir 

du silicone à cet endroit. 
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Figure 4.10 PCB flexible intégré dans un bracelet de silicone avec les jauges de déformations 

suivant deux directions différentes 

4.2.2.2.2 Impression 3D de matériau flexible 

Cette technique consiste à imprimer un bracelet flexible avec une imprimante 3D. Le matériau 
qui a été utilisé est le Ninja Flex de la compagnie NinjaTeck (Ninjaflex 3D printer filament). Ce 
matériau est l’un des matériaux d’impression 3D les plus flexibles disponibles sur le marché. Le 
matériau a une dureté de 85A et peut s’allonger jusqu’à 660% sans usure ni fissure. Le bracelet a 
été imprimé avec une Prusa I3 MK3S ( imprimante original Prusa I3 MK3S). La procédure de 
fabrication est comme suit : 

1. Imprimer une couche mince de NinjaFlex ayant une épaisseur de 0.3mm 
2. Placer les jauges de déformation au-dessus de la couche imprimée 
3. Imprimer une couche mince de NinjaFlex ayant une épaisseur de 0.3 mm au-dessus des 

jauges  

 
 
Le résultat obtenu est présenté sur la Figure 4.11. 
 

 

Figure 4.11 Impression 3D flexible d'un bracelet en TPU intégrant des jauges de déformations 
 
 

https://ninjatek.com/shop/ninjaflex/
https://www.prusa3d.fr/original-prusa-i3-mk3-fr/
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4.2.2.2.3 Utilisation d’une bande kinésiologique 

Cette technique a consisté à utiliser directement une bande kinésiologique pour établir le contact 

entre la peau et la matrice de jauges de déformation. 

1. Souder les jauges de déformation sur le PCB flexible. Six jauges doivent être soudées sur 
la structure flexible. 

2. Déposer la structure sur une bande kinésiologique 

Le résultat obtenu est présenté sur la Figure 4.12 

 

Figure 4.12: Bande kinésiologique instrumentalisée avec une matrice de jauges de déformation 

4.2.3 Traitement sur platine d’expérimentation 

Pour la platine d’expérimentation, la chaîne de mesure [54] des capteurs à base de jauges de 

déformation a été adaptée. La Figure 4.13 présente les différentes étapes de cette chaîne de mesure. 
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Figure 4.13 Chaîne de mesures des capteurs à base de jauges de déformation. Figure adaptée de 
[54] 

Les éléments importants de cette chaîne de mesure sont les suivants : 

• Le capteur : Bracelet en silicone contenant des jauges de déformation pour détecter les 
contractions musculaires. 

• Le conditionneur : Quart de Pont de Wheatstone permettant de mesurer avec précision la 
variation de la résistance des jauges. 

• L’alimentation : Une source d’alimentation stable avec une précision de l’ordre du 
centième de volt. 

• Le multiplexeur : Un composant permettant d’utiliser plusieurs capteurs.  

• L’amplification : Un composant permettant d’augmenter l’intensité du signal. 

• La lecture et l’enregistrement : Matlab pour présenter les données en temps réels, les 
traiter et les enregistrer. 

L’implémentation de cette chaîne de mesure a permis de développer le circuit présenté à la Figure 

4.14. La Figure 4.15 présente la platine d’expérimentation qui a été développée.  
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Figure 4.14 Circuit électrique de la carte d'acquisition des signaux provenant des jauges de 
déformation 

 

 

Figure 4.15 Platine d'expérimentation reproduisant le schéma électrique présenté à la Figure 4.14 

Conditionnement du signal : 
Dans ce circuit, quatre ponts de Wheatstone (quart de pont) ont permis le conditionnement du signal 

provenant de quatre jauges de déformation. Chaque pont de Wheatstone a été alimenté par une 

source de tension de 5V provenant d’une source d’alimentation précise (± 0.01 mV). La stabilité 

de la source de tension est importante pour assurer la stabilité des ponts de Wheatstone. Un 

potentiomètre linéaire dont la valeur nominale de résistance est de 500 Ohm a été utilisé pour 

équilibrer le pont de Wheatstone. Ce potentiomètre a un nombre de tours de 20 permettant d’avoir 
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une bonne précision sur la valeur de résistance. Les résistances de ce circuit ont une tolérance de 

±1%, ce qui a facilité l’équilibrage du pont de Wheatstone. Le signal provenant des jauges a donc 

été acheminé aux deux multiplexeurs. 

Multiplexage : 
L’utilisation des multiplexeurs a permis d’augmenter le nombre d’entrées analogiques en lisant 

séquentiellement chacune des entrées du multiplexeur. Il a aussi permis d’utiliser un seul 

amplificateur et un seul convertisseur analogique digital (ADC) pour amplifier le signal provenant 

des jauges. Un amplificateur est généralement utilisé pour un pont Wheatstone[80]. L’utilisation 

d’un multiplexeur permet d’utiliser un seul amplificateur pour tous les ponts de Wheatstone. Ainsi, 

cette configuration nous assure une réduction de la taille du système d’acquisition et de sauver des 

coûts sur les équipements [41]. Le multiplexeur utilisé (CD74HC4067) a 16 entrées analogiques 

contrôlées par 4 signaux digitaux.  

Amplification : 
Après le multiplexage suit l’étape de l’amplification. Le pont de Wheatstone a permis de traiter les 

signaux analogiques en transformant les petites variations de résistance en un différentiel de 

voltage. Ensuite, l’amplificateur d’instrumentation amplifie le signal a une valeur proche de la 

valeur référence du convertisseur analogique digitale du microcontrôleur (Arduino Uno). 

Pour la platine d’expérimentation, l’amplificateur d’instrumentation AD623 a été sélectionné, car 

il présente les propriétés suivantes : 

• Facilité d’utilisation et mise en œuvre 

• Rejet du mode CMRR jusqu’à 200Hz 

• Plage d’entrée de tension s’étend jusqu’à 150mV en dessous de la tension de référence 

• Gain variable de 1 à 1000.  

• Alimentation unique (Ex : +5V) 

Afin de déterminer les paramètres adéquats pour le bon fonctionnement de l’amplificateur, la 

procédure suivante a été utilisée :  

1. Concevoir un pont de Wheatstone avec une seule jauge de déformation. 

2. Mesurer la différence de voltage provenant du pont avec un voltmètre digital. 

3. Déformer la jauge au maximum dans les deux directions afin de déterminer le différentiel 
de voltage maximum que l’on peut obtenir. 



52 

 

4. Noter la différence de voltage maximum comme étant Vdiff = ± 2mV 

5. Connecter Vs- au GND pour utiliser l’amplificateur avec une seule source de voltage de 
+5V. 

6. Connecter Vref à une source de voltage de 2.5V pour créer un décalage afin de lire les 
différentiels de voltage négatifs. 

7. Déterminer les valeurs du mode commun (Vcm) à l’aide de fiche technique.  

L’outil proposé par Analog Device [81] a permis de représenter et de déterminer les caractéristiques 

de fonctionnement de l’AD623. La valeur du gain a été ajustée à 450 en utilisant une résistance de 

223 Ohm.  

  

Figure 4.16 Outil permettant de choisir les caractéristiques et la plage de lecture de 
l'amplificateur AD623 [81].L’interface  à droite permet de régler les paramètres de 

l’amplificateur. L’interface à gauche permet de visualiser la plage de lecture en fonction des 
paramètres choisis. 

 

Lecture Arduino et enregistrement Matlab 
Pour la lecture des données, un code sur la plateforme Arduino a été développé pour contrôler la 

lecture des signaux provenant des jauges de déformation. Afin de visualiser les données en temps 

réel, le programme Matlab a été utilisé pour sa puissance de calcul et des fonctions disponibles 

pour le traitement de signal. Les librairies ‘Signal Processing Toolbox’ et  ‘Filter Design’  ont été 

utilisées. 

https://www.mathworks.com/solutions/signal-processing.html
https://www.mathworks.com/discovery/filter-design.html
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4.2.4 Remplacement de la platine d’expérimentation 

Après avoir vérifié le fonctionnement de la platine d’expérimentation, des changements de 

composantes ont été effectués pour mieux répondre aux besoins de notre application. La description 

des besoins et la conception du nouveau système ont été présentées dans l’article, Chapitre 5. Les 

changements majeurs sont présentés ci-dessous. 

1. Remplacement de la carte Arduino Uno par l’ESP32. L’ESP32 permet d’avoir une 

communication sans fils entre les différents capteurs. Ce microcontrôleur a également une 

puissance de calcul plus élevée pour effectuer les calculs nécessaires pour l'identification 

des mouvements en temps réel à bord  

2. Remplacement de l’amplificateur AD623 avec l’ADS1256. L’ADS1256 est un 

convertisseur analogique-numérique (A/N) 24 bits à très faible bruit. Il a plus de résolution 

que A/N du Arduino Uno qui est utilisé avec l’AD623. 

3. Développement d’une carte de circuit imprimé (PCB) pour rendre le système compact. 

4.3 Ensemble de données 

L’étude présentée dans l’article, Chapitre 4 a porté sur un sujet unique. Ce sujet a effectué une 

séquence de mouvements prédéfinie. Une méthode basée sur l’intensité du signal a été utilisée pour 

identifier 9 mouvements du membre supérieur. 

Cette section présente la méthodologie complémentaire qui a été utilisée pour développer un 

algorithme d’apprentissage profond pour identifier 10 mouvements du membre supérieur. Ainsi, la 

méthodologie a consisté à collecter des données sur 7 personnes saines volontaires (3 personnes de 

sexe masculin d’âge moyen de 23 ans et de taille moyenne 1.72m; 4 personnes de sexe féminin 

d’âge moyen de 22 ans et de taille moyenne 1.67m) pour créer une base de données des signaux 

provenant de la fusion de capteurs présentée dans l'article, Chapitre 5. Avant le début de chaque 

session d’acquisition des données, chaque sujet a reçu une explication écrite et orale de l'expérience 

elle-même. Les participants ont fourni un consentement par la signature d’un formulaire de 

consentement. L'étude a été approuvée par le comité d'éthique de la recherche du Centre hospitalier 

universitaire Ste-Justine, Montréal, Canada. 
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4.3.1 Placement des capteurs 

Le placement des capteurs pour l’acquisition des données suit le modèle utilisé dans l’article, 

Chapitre 5, Figure 5.2. 

4.3.2 Acquisition des signaux 

La méthode d'acquisition a utilisé les capteurs conçus pour enregistrer la cinématique du membre 

supérieur et l'activité musculaire correspondante. Cette section présente plus de détails sur 

l’architecture utilisée pour la collecte des données dans l’article, Chapitre 5. 

Dans cette architecture, les 3 capteurs, le bracelet de jauges de déformation et les deux IMUs, 

communiquent avec le capteur central (Bracelet (B)) par le protocole sans-fil ESP-NOW, Figure 

5.8. Ce dernier quant à lui communique avec l’ordinateur par une communication UART. 

Ainsi, les données suivantes ont été transmises par le protocole ESP-NOW : 

• Bracelet (AB) : signaux enregistrés par les 6 jauges de déformations provenant du bracelet 

placé sur l’avant-bras. Ces signaux ont été identifiés par les lettres AB pour Avant-bras et 

un numéro pour indiquer la position de la jauge. 

• IMU(1) : les trois accélérations linéaires et les 3 vitesses angulaires provenant de l’IMU 

placée sur l’avant-bras.  

• IMU(2) : les trois accélérations linéaires et les 3 vitesses angulaires provenant de l’IMU 

placée sur le bras. 

Un total de 18 signaux a été envoyé par le protocole ESP-NOW. Ensuite, la centrale elle-même a 

été connectée au bracelet de jauges de déformations placé sur le bras. En plus de recevoir les 18 

signaux par la communication sans-fil, elle s’est chargée d’acquérir 6 signaux provenant du 

bracelet de jauges de déformation placée sur le bras. Ces signaux ont été identifiés par la lettre B 

pour bras et un numéro pour indiquer la position de la jauge. 

Un total de 12 signaux provenant des jauges de déformation a été enregistré pour chaque 

mouvement. En plus de ces signaux, les accélérations linéaires triaxiales et les vitesses angulaires 

provenant de deux IMUs ont été utilisées. Un total de 24 signaux a été obtenu en combinant les 

signaux des jauges de déformation et des centrales inertielles 
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4.3.3 Exercices 

Les exercices effectués pour des fins de collectes de données sont identiques aux exercices 

présentés dans l’article, Chapitre 5, Figure 5.3 Ces mouvements ont été choisis sur la base de la 

littérature pertinente et les directives de pratique standard de réadaptation [24]. 

4.3.4 Collecte des données 

Pour chaque session d’exercices en laboratoire, les sujets ont effectué les 10 mouvements à l’étude. 

Pour chaque mouvement, une acquisition sur 60 secondes suivant le rythme d’un métronome à 

50BPM soit 0.83 Hz a été effectuée suivie d’une pause de 10s. La pause de 10s est observée pour 

éviter les fatigues musculaires. Ce protocole a été inspiré des travaux de [82]qui ont établi une base 

de données de référence comptant 52 mouvements des doigts, des mains et des poignets. 

L’acquisition a été répétée deux fois pour chaque mouvement. Les données ont été échantillonnées 

à une fréquence de 100 Hz. La fréquence de 100 Hz a été choisie pour limiter la quantité de données 

à traiter. La fréquence des mouvements humains est de 0-20 Hz [83]; de ce fait le théorème de 

Shannon Nyquist a été respecté. À la fin de cette étape, un fichier « .txt » a été généré pour chaque 

mouvement effectué pour chaque sujet. 

4.3.5 Traitement des signaux 

Différentes étapes de traitement ont été appliquées aux signaux afin de pouvoir les utiliser avec les 

algorithmes de classification. 

Filtration et amplification : Un filtre passe-bas numérique de type Butterworth d'ordre 4 avec une 

fréquence de coupure de 1 Hz a été utilisé pour filtrer le signal des jauges de déformation. Les cent 

premières données de chaque jauge ont été moyennées et utilisées pour définir un décalage pour 

les données suivantes. Un gain digital de 10,000 a été appliqué à ces signaux pour permettre de 

mieux les analyser visuellement. Les signaux bruts provenant des centrales inertielles ont été 

utilisés pour réduire les calculs effectués par le microcontrôleur. 

Étiquetage : Une procédure d’étiquetage a été utilisée pour attribuer à chaque portion de signal 

une classe correspondante. Cette méthode est considérée comme de l’apprentissage supervisé 

« supervised learning », car les classes sont attribuées par un agent externe contrairement aux 

techniques non supervisées « unsupervised learning », qui utilisent des techniques de 
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« clustering ». Cette étape est cruciale pour la classification, car la présence d’exemples 

mal étiquetés dans les données d’apprentissage peut entraîner de mauvais résultats. L’étiquetage 

s’est fait à l’aide de l’outil « Signal Labeler » de Matlab. Un exemple d’étiquetage est montré à la 

Figure 4.17 pour le mouvement d’extension du poignet. 

 

Figure 4.17 Étiquetage des signaux pour le mouvement d'extension du poignet pour un des sujets. 
À la fin de cette étape, un fichier «. mat » par mouvement a été généré. Dans chaque fichier, une 

classe de mouvement a été attribuée à un intervalle de temps précis. 

4.4 Traitement des données 

Le traitement des données a pour but de structurer les données pour qu’elles soient utilisables par 

les algorithmes d’apprentissage profond. 

 Après l’obtention du fichier « .mat », section 4.3.5, les étapes suivantes de traitement de données 

ont  été présentées: 

1. Utilisation du fichier « .mat » pour créer un fichier « .txt » avec 25 colonnes. Les 24 

premières colonnes représentent les signaux provenant des capteurs. La 25e colonne 

représente la classe attribuée à chaque point de données. 

2. Mise en commun des fichiers par mouvement pour tous les sujets. Par exemple, le fichier 

« EF.txt » regroupait tous les mouvements de la flexion du coude de tous les sujets. Pour 

finir, 10 fichiers correspondant à chacun des mouvements ont été obtenus. Le choix de 

combiner les données de tous les sujets a été effectué à cause du nombre insuffisant de 

données par individu pour entraîner des algorithmes de classification. 
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3. Segmentation des données avec une fenêtre de 250 ms et 50 ms de chevauchement entre 

les fenêtres. Bien que des intervalles plus grands ont plus d'informations et que la typicité 

améliore la sortie de classification, il a été démontré que les fenêtres doivent être inférieures 

à 300 ms afin que l'utilisateur ne subisse pas de retards de contrôle [26]. 

Après avoir effectué ces opérations une matrice 3 dimensions a été obtenu pour chacun des 

mouvements. La Figure 5.18 présente la forme de la matrice qui a été obtenue. 

 

Figure 4.18 Représentation des dimensions de la matrice obtenue après le traitement des données. 
Suivant les colonnes, les données provenant des capteurs (24 signaux). Suivant les lignes le 

nombre de données correspondant à 250 ms d’acquisition. La profondeur représente le nombre de 
fenêtres de 250ms x 25 canaux. 

Une seconde opération a consisté à séparer les données provenant des capteurs et les classes. Pour 

chaque fenêtre de données, une classe résultante est associée, Figure 4.19. Cette classe est obtenue 

en faisant la moyenne des classes des échantillons de la fenêtre. Lorsqu’une classe a une moyenne 

supérieure à 95% alors elle est attribuée à la fenêtre. 
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Figure 4.19 Séparation des données provenant des capteurs et des classes associés aux fenêtres 
 
Ainsi, pour les données des capteurs la structure suivante est obtenue : 

𝐷 = (𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑓𝑒𝑛ê𝑡𝑟𝑒𝑠 (𝑓), 𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑝𝑎𝑠 𝑑𝑒 𝑡𝑒𝑚𝑝𝑠 (𝑛), 𝑛𝑜𝑚𝑏𝑟𝑒𝑠 𝑑𝑒 𝑝𝑎𝑟𝑎𝑚è𝑡𝑟𝑒𝑠) 

Et pour les classes on obtient un vecteur : 

𝐶 = [𝑁𝑀, 𝐸𝐸, 𝐸𝐹,… ] dont le nombre d’éléments correspond au nombre de fenêtres f 

Les composants de la matrice D sont :  

• Nombres de paramètres: le nombre de signaux utilisés. Ici 24 signaux provenant des 

capteurs ont été utilisés soit 12 signaux provenant des centrales inertielles et 12 signaux 

provenant des jauges de déformation. 

• Nombre de pas de temps(n): le nombre de données par fenêtre. Ici ce nombre est de 25. 

• Nombre de fenêtres(f) : le nombre de fenêtres de 250 ms pouvant être extraite par 

mouvement. 

La Figure 4.20 présente le nombre de fenêtres ayant une dimension de 25 données (250 ms à 

100Hz) et 24 paramètres pour chacun des mouvements. 
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Figure 4.20 Répartition des données par classe de mouvement 

 

4. La dernière étape a consisté à séparer les données en ensembles d’entraînement, de 

validation et de tests. Ainsi pour chaque mouvement, 70% des données ont été utilisées 

pour l’entraînement, 15% pour la validation et 15% pour le test. Les éléments appartenant 

à chacun de ces ensembles ont été choisis de façon aléatoire. 

4.5 Logiciels et matériels 

Une fois les données structurées de manière appropriée, elles ont été importées dans le programme 

développé en Python pour être utilisées par l’algorithme d'apprentissage profond. Cela a été 

implémenté dans un environnement virtuel créé à l'aide d'Anaconda qui est une distribution libre 

et Open Source. L’éditeur de code Visual Studio Code (VScode) a été utilisé. Python a été choisi 

en raison de sa simplicité ainsi que de sa compatibilité avec plusieurs bibliothèques Open Source 

conçues pour le développement et l’entraînement de modèles d’apprentissage machine, tel que 

Pytorch, Theano, et Tensorflow. La bibliothèque Keras est une interface de programmation 

d’application (API) intuitive et bien documentée. Elle fournit une méthode simple de haut niveau 
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de programmation de réseaux de neurones. Par conséquent, Keras est un choix idéal pour une 

implémentation de haut niveau de réseaux complexes, tels que les CNN et les LSTM.  

Le processus d’entraînement des réseaux de neurones profonds requiert très souvent une puissance 

de calcul élevée. Il faut donc s’assurer d’avoir un équipement adéquat. Le système utilisé pour les 

expériences était un ordinateur basé sur Windows 64 bits, processeur Intel® Core™ i7, avec une 

mémoire RAM de 16 GO et une carte graphique GTX1060 avec 4 GO de mémoire dédiées 

compatibles avec CUDA de NVIDIA. Dans les résultats, le temps d'exécution pour les différents 

réseaux a été indiqué, car il dépend fortement des performances de l’ordinateur. 

4.6 Expériences 

La dernière étape avant l’entraînement des réseaux de neurones a consisté à balancer le nombre 

d’échantillons dans chacune des classes au sein de l’ensemble des données. En effet, la Figure 5.20 

montre que les classes présentent de grandes disparités. La classe correspond au mouvement de 

repos (NM) contenait le plus grand nombre d’échantillons (4593). La classe correspondant au 

mouvement de préhension (PG) avec 676 échantillons contenait le plus petit nombre 

d’échantillons. Dans la section 2.6, l’importance d’avoir des classes balancées a été démontrée. À 

cette fin, avant chaque exécution, les fenêtres classées comme étant des mouvements de repos ont 

été supprimées aléatoirement des ensembles de données. De plus, hormis le mouvement de repos, 

les autres classes de mouvement ont également été soumises à une suppression aléatoire d'un 

certain nombre de fenêtres afin que toutes les classes de mouvement contiennent exactement le 

même nombre d'exemples que le mouvement le moins représenté. Pour améliorer l'entraînement, 

les exemples ont également été choisis aléatoirement, avant chaque exécution. 

Aussi, comme décrit dans la section 2.4.1, les classes cibles ont été encodées selon le format « one 

hot » représenté à la Figure 4.21. 
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Figure 4.21 Encodage « one hot » pour la classification multiclasse 

 

Deux architectures différentes ont été testées sur l’ensemble de données. La première consiste à 

utiliser un LSTM et la seconde consiste à ajouter un CNN avant les couches LSTM pour former 

un CNN-LSTM. Une fois que la comparaison a été effectuée entre ces architectures, celle qui 

fournissait le meilleur résultat a été optimisée en recherchant l'espace des hyperparamètres. 

Lorsqu’un espace d’hyperparamètres permettant d’avoir de bons résultats de classification, 

l’impact des données inertielles sur le résultat de classification a été étudié. 

4.6.1 Comparaison des modèles 

Les deux architectures qui ont été comparées sont le modèle LSTM et le modèle CNN-LSTM. La 

motivation pour l’utilisation de ces modèles a été décrite dans la section 2.1.2. Le modèle (LSTM) 

a été utilisée pour l'apprentissage des caractéristiques temporelles des signaux. La couche de 

convolution quant à elle a été responsable de l'extraction des caractéristiques et de la réduction de 

la dimensionnalité des données. Pour comparer les deux architectures, le modèle LSTM présenté 

sur la Figure 4.22 a d’abord été développé et les hyperparamètres ont été définis en effectuant 

différents tests. Par la suite, une couche de convolution 1D et une opération de « max pooling » 
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comme décrite dans la section 2.3.3 ont été rajoutées au modèle LSTM précédemment développé, 

Figure 4.23. 

 

 

Figure 4.22 Modèle LSTM. L'entrée est transmise à deux couches LSTM comptant chacune 32 
neurones. Un dropout de 0.2 a également été appliqué à ces couches. A la fin du réseau, il y a un 

perceptron multicouche qui se terminer avec deux couches. Une couche dense comptant 18 
neurones et un terme de régularisation 𝜆 = 0.002. Une de sortie avec une fonction d’activation 

softmax et 10 neurones, une pour chaque classe de mouvement. 
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Figure 4.23 Modèle CNN-LSTM. Ce modèle a été obtenu en rajoutant un réseau de neurones de 
convolutif juste avant le modèle LSTM présenté à la Figure 4.16. L’entrée est d'abord transmise à 
une couche convolutive 1D avec 32 filtres de dimension [1x5] et un pas de 1. La fonction ReLu a 

été utilisée comme fonction d’activation. La couche convolutive est suivie par une couche de 
mise en commun « max pooling ». Les vecteurs de caractéristiques extraits par ceux-ci seront 

alors transmis au réseau de neurones récurrents. 

4.6.2 Recherche d’hyperparamètres 

Dans le processus de développement des algorithmes d’apprentissage profond, il est commun 

d’effectuer une recherche d’hyperparamètres pour améliorer les performances de l’algorithme 

même après avoir trouvé une architecture fonctionnelle. Il existe différentes stratégies de recherche 

d’hyperparamètres. La plus répandue est une recherche sur grille où plusieurs combinaisons de 

paramètres sont testées et les résultats comparés. 

Cependant, ces différentes stratégies sortent du cadre de ce travail de maîtrise. Ainsi, dans cette 

étude le processus de recherche d’hyperparamètres a consisté à tester de manière séquentielle cinq 

valeurs de chaque hyperparamètre en gardant à chaque fois la valeur de l’hyperparamètre qui a 

donné le meilleur taux de classification pour les essais subséquents. Cela a permis d’avoir une 

référence pour des études futures. 
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4.6.3 Effet des données cinématiques 

Après avoir déterminé le modèle qui performe le mieux, la quantification de l’apport des données 

cinématiques sur les résultats de classifications a été entreprise. Pour ce faire, les données reliées 

aux centrales inertielles ont été retirées des données de l’ensemble d’entraînement, de validation et 

de test. Ainsi, une base de données contenant uniquement les données des jauges de déformations 

a été utilisée pour effectuer l’entraînement du modèle d’apprentissage profond. La nouvelle matrice 

de données est présentée à la Figure 4.24. Les résultats de classifications ont été comparés aux 

résultats obtenus avec le modèle qui a utilisé l’ensemble des données. 

 

 

Figure 4.24 Représentation des dimensions de la matrice obtenue après la suppression des 
données inertielles. Suivant les colonnes, les données provenant des bracelets de jauges de 
déformation (12 signaux). Suivant les lignes le nombre de données correspondant à 250 ms 

d’acquisition soit 25. La profondeur représente le nombre de fenêtres de 250 ms x 12 canaux. 
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CHAPITRE 5 ARTICLE 1 : DEVELOPMENT OF A WEARABLE 

SYSTEM TO IDENTIFY MOVEMENT INTENTIONS BY COMBINING 

STRAIN GAUGES AND INERTIAL MEASUREMENT UNITS  

Cet article a été soumis le 14 novembre 2021 dans la revue IEEE Sensors Journal. Les auteurs de 

l’article sont Steve Regis Koalaga, Maxime Raison et Sofiane Achiche. 

5.1 Abstract 

The combination between surface 

electromyography sensors and inertial 

measurement units is the most common 

multimodal sensing method used in body 

area networks. Nowadays, this 

combination is frequently used to 

identify the intentions of movement in 

humans, e.g. to control their prosthesis. 

However, the surface electromyography 

sensors are usually bulky, with electrodes 

placed on skin sites, and require a high sampling frequency, usually 1000 Hz, which technically 

highly reduces the number of sensors that can be used simultaneously by an onboard 

microprocessor. Further, the electromyographic measurement suffers from crosstalk due to 

muscles packed side by side. These limitations in electromyography motivate the search for 

alternatives using multiple sensors capable of operating at lower frequencies for everyday 

applications at an affordable cost. The objective of this study is to develop a novel wearable system 

to identify intentions of movement by combining strain gauges and inertial measurement units. The 

system is composed of 1. two bracelets using six strain gauges each, connected to a flexible printed 

circuit board and 2. two inertial measurement units. Physiologically, the strain gauges measure the 

skin deformation due to muscle contraction, while the inertial measurement units provide 

complementary data on joint kinematics. The system was tested at the upper limb, and successfully 

identified 9 main movements based on the signal intensity of strain gauges. These results show the 
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great potential of such a sensory system to become a smart wearable sensory system to detect 

human movement intention. 

5.2 Index Terms 

strain gauges, IMUs, sensor fusion, movement intention, kinesiological tape. 

5.3 Introduction 

5.3.1 On the combination of sEMG-IMU to identify movement intention: 

context and physiological justification 

 The combination between surface electromyography (sEMG) sensors and inertial measurement 

units (IMU) is the most common used multimodal sensing method in body area networks [1]. 

Nowadays, this combination is frequently utilized to identify the intention of movement in humans, 

e.g. for hand and finger gesture recognition [2], or to classify upper limb phantom movements in 

transhumeral amputees to control their prosthesis (e.g. [3], [4]). And the methods for identification 

of the intention of movement based on sEMG and IMU have the potential to be extended to daily 

general applications, such as human computer interfacing [5], [6], teleoperation of industrial robots 

[7], etc.  

The combination between sEMG and IMU can be physiologically justified as a potentially 

successful avenue, because:  

1) sEMG enable to detect the intention of movement, by measuring the muscle activity. 

Therefore, sEMG is still the main sensor used to control myoelectric prostheses.  

2) IMUs provide additional kinematics information about the motion, i.e., articulation 

configurations, velocities, and accelerations. IMUs fills two limitations of sEMG:  
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• sEMG commonly suffers from the limb position effect, where sEMG signals for the 

same motion are different in different limb positions [8], [9]. Therefore, IMUs can be 

complementary. 1 

• IMUs are particularly good for capturing larger motions, while sEMG data are better at 

distinguishing different hand shapes and finger movements [2]. 

Adding kinematics features enabled to increase the accuracy of the movement classification by 

4.8% [3] on human upper limb movements. Furthermore, Geng et al. [10] and Fougner et al.  [11] 

presented a classifier in cascades, which reduced the average movement classification error from 

18% to 5.7%. This classifier used accelerometry to determine the best limb position before 

choosing the sEMG classifier [11].  

5.3.2 Limitations of sEMG and search for alternative solutions 

sEMG is a technique that uses electrodes placed on the skin at a specific location to monitor muscle 

contractions [12]. There are several drawbacks to using sEMG [12], [13]. sEMG can often be 

unstable due to sweat, electrode shifts, motion artifacts, and electronic noise [12], [14]. Also, 

crosstalk can occur due to the high number of muscles packed side by side, and muscular fatigue 

can crucially affect the quality of the signals [12], [14]. Further, the amount of data coming from 

sEMG, due to the acquisitions generally at 1000 Hz, requires high computing power to process it 

in real time [15]. Hence, researchers need to pay attention to these critical issues. 
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Different sensors have been proposed as alternative solutions to using sEMG. Indeed, the growing 

interest in smart wearable technologies requires the development of new sensors at low cost, with 

high sensitivity and low detection limit [16]. Liang Zou et al. [17] grouped together all tactile 

sensing systems in four groups, which are capacitive, piezoresistive, piezoelectric and tactile 

optical sensors. The tactile sensing systems are mostly used in robotics and biomedical engineering. 

A more detailed work done by [18], introduced sensor skins defined to be stretchable planar 

structures with embedded sensing components. Sensor skin found in the literature can be grouped 

by the type of material (elastomers, woven fabric), the type of conductor (thin metal films, liquid 

metal), and the structure they use (microchannels, mechanical flexible interfaces). Chang et al. [19] 

proposed a strain sensor that can still form conformal contact to the skin even during body 

movements. They are prepared by solution coating and consist of two layers, a dry adhesive layer 

of biocompatible water-based elastomeric polyurethane, and a detection layer of a non-adhesive 

composite of reduced graphene oxide and carbon nanotubes. The adhesive layer makes the sensors 

conform to the skin, while the sensing layer has sensitive resistance to deformations. Song et al. 

[20] presented a strain sensor based on silk graphene spandex coated fabric (GCSS) prepared by 

reducing graphene oxide. The sensor worked thanks to the extension of the conductive fiber and 

the deformation of the woven structure. GCSS was successfully used to detect human movement, 

by providing data for gesture recognition based on deep learning. Yao et al. [21] described the 

application of capacitive strain sensors based on silver nanowires for kinematic finger tracking. 

The sensors can be attached to the skin to track the movement of the finger joints with minimal 

interference with daily activities. Ali et al. [22], presented a new goniometric glove using flex 

sensors to capture the user hand gesture that can be used to wirelessly control a bionic hand. 

However, many of these sensors used a complex fabrication procedure and/or special materials 

graphene spandex coated fabric, liquid gallium, etc. [17], [18], and were limited to finger 

movements tracking [19], [20], hence reducing the number of upper limb movements that could be 

detected in real applications. 

5.3.3 Strain gauges as the promising solution 

Mori et al. [23] presented a new bioinstrumentation sensor using one strain gauge for upper limb 

amputees. Their work concluded that the repeatability of the strain gauge signal is superior to 

myoelectric signal because the sensor measures the deformation of the skin [23].   
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Finally, Zizoua et al. [15] presented a proof of concept of a bracelet using strain gauges for the 

identification of four upper limb movements in traumatic amputees: elbow flexion/extension and 

forearm pronation/supination. Strain gauges can measure small deformation of about 10-13µm and 

are widely used for their low cost and simple signal conditioning [15].  

Therefore, Zizoua et al. [15] could be a starting reference as an alternative to EMGs, but this system 

cannot be used as proposed to identify three-dimensional movements, because of four major 

limitations:  

1) Uniaxial skin deformations: the gauges were placed only in the longitudinal direction of 

the biceps brachii muscle, which does not enable to record multi-axial skin deformations.  

2) Fragility: the strain gauges were connected by two thin wires. This enabled a first proof of 

concept but was not viable as it either broke or unsoldered when used several times [15]. 

3) Non-portability: the system was neither compact nor portable, which limits its application 

in everyday life.  

4) Lack of conform contact to skin during movement: the strain gauges were embedded in 

silicone that did not provide a direct contact with the skin, thus limiting the ability of the 

system to measure the actual skin deformation. 

5.3.4 Problem, objective, and research hypotheses 

Here above, the state-of-art survey revealed two major problems: 

1. The common issues with sEMG were solved by a first proof of concept of bracelet using 

strain gauges. But this one still had limitations: uniaxial skin deformations, fragility, 

inaccuracy, and non-portability. 

2. The combination between strain gauges and IMUs has never been investigated to detect 

human motion intention.  

Consequently, the objective of this study is to develop a wearable system to identify intentions of 

movement by combining strain gauges and inertial measurement units.  

The main design requirements (DR) of this system are as follows: 

DR 1: The system must be able to measure multi-axial skin deformations. 
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DR 2: The system must be able to be used several times in daily three-dimensional movements. 

DR 3: The system must be wearable.   

The following research hypothesis (RH) to study can be formulated: “The combination between 

strain gauges and IMUs could enhance the ability to detect motion intention”.  

5.4 Methods 

The muscle contractions during a movement create a deformation of the skin at the surface. Hence, 

identifying the muscles involved in the upper limb movement can help to determine the best sites 

to measure skin deformations and to design the strain gauge bracelet accordingly. 

5.4.1 Design of a strain gauge bracelet 

The strain gauge bracelet consisted of six equally spaced (3.5 cm) strain gauges. These gauges 

were connected by a 0.1 mm thick flexible printed circuit board (PCB) (see Fig. 5.1 (a)). In this 

flexible PCB, the strain gauges with odd numbers (1, 3 and 5) were aligned parallel to the 

longitudinal direction of the biceps brachii, and the strain gauges with even numbers (2, 4, and 6) 

were aligned perpendicularly to the longitudinal direction of the biceps brachii. This configuration 

enables the recording of the skin deformations along two different axes.  

The gauges were also capable of bending in two directions providing positive (convex deformation) 

or negative (concave deformation) voltage variations. 

The flexible PCB had a 12-position flat flexible connector (FFC). This connector was used to 

connect the strain gauge bracelet to the acquisition board. The flexible PCB provided a solid 

connection with the strain gauges.  

Different tests were performed with different types and sizes of strain gauges. The tests consisted 

in applying a deformation to the strain gauges and measuring the signal intensity. The gauge with 

the best linear response and high intensity was selected, namely the CF120-10AA. The gauge had 

a linear pattern and a nominal resistance of 120 ohm ± 1% with a gage factor of 2± 1%. The gauge 

was made of constantan alloy and had a sensitive grid of 10.0 x 4.0 mm. It was able to measure 

small strains of about ± 5% of the neutral length which was adequate for our application.  
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For a better measurement of skin deformation, the gauges, previously soldered on the flexible PCB, 

were placed directly on a kinesiological tape (see Fig. 5.1 (b)).   

   

 

The kinesiological tape was designed to mimic the skin elasticity so the users can use their full 

range of motion [24]. The tape used a medical-grade adhesive, which was water-resistant and 

strong enough to stay on for several days even, while working out or taking showers [25]. 

Kinesiological tapes are known as therapeutic tapes that are stretched and, strategically applied to 

the body to provide support, lessen pain, reduce swelling, and improve performance [26]. A 

therapist can let you know how much stretch is needed for your treatment. In this study, no stretch 

was applied to the kinesiological tape, as it was only used as a bonding interface between the strain 

gauges matrix and the skin. This configuration provided better contact with the skin.  

5.4.2 Muscles Involved in Upper Limb Movement 

As a proof of concept, one healthy adult subject (male, age: 25 years old, size: 1m70) participated 

to this study. The experimental procedure was approved by the Ethic Board of the Research Center 

of Ste-Justine University Hospital Center, in Montreal, Canada. The participant provided informed 

consent before the experiment and declared being in a good health.  

Fig. 5.2 shows the placement of two bracelets, totalizing 12 strain gauges: 

Figure 5.1 Strain gauge bracelet. (a) Flexible PCB (yellow) with the connections 
for 6 strain gauges. (b) Instrumented kinesiological tape (blue) the flexible PCB 

(yellow) connected to the 6 numbered strain gauges (orange rectangles). 
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1. Strain gauge bracelet labeled B placed around the arm at the biceps brachii prominence. 

2. Strain gauge bracelet labeled AB placed around the forearm 5 cm below the elbow joint 

center; on the forearm and arm. 

In this paper, a strain gauge on a bracelet is identified by the label of the bracelet, i.e., B or AB, 

followed by the gauge number from 1 to 6 shown in Fig. 5.1 (b). e.g.: The gauge B6 referrers to 

strain gauge number 6 on bracelet B. 

 

Figure 5.2 (a) Placement of the two strain gauge bracelets: bracelet B around the arm, and 
bracelet AB placed around the forearm; two IMUS: IMU (1) placed on the hand; IMU (2) placed 

on the forearm. (b) Anterior view of the human upper limb. (c) Posterior view of the human 
upper limb. The image (b) and (c) were adapted from [27]. 

In this study, 10 movements of the upper limb (Fig. 5.3) were selected. Table 5.1 identifies the 

muscles involved in each movement and the main sensors that were positioned to capture the 

movements.  

The biceps brachii, brachialis, and brachioradialis muscles are responsible for flexing the forearm. 

The triceps brachii and anconeus muscles are responsible for extending the forearm. The gauge 

B6 was placed on the center on the biceps brachii of the right arm, and the other gauges of strain 

gauge bracelet B were placed going round the arm (X-axis of Fig. 5.2) following the positive 

direction of the right-hand rule (B6, B5, B4, B3, B2, B1).  
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A supinator is the muscle responsible for rotating the forearm so that the palm is facing up or 

forward. A pronator is the muscle that rotates the arm so that the palm is facing down or toward 

the back. The extrinsic muscles of the forearm allow movement of the wrist and hand. The muscles 

of the posterior group extend the hand to the level of the wrist; the muscles of the anterior group 

flex the hand at the wrist. 

 

Figure 5.3 The 10 identified movements. (1) Elbow Flexion (EF). (2) Elbow Extension (EE). (3) 
Forearm Pronation (FP). (4) Forearm Supination (FS). (5) Wrist Flexion (WF). (6) Wrist 

Extension (WE). (7) Wrist Ulnar Deviation (WL). (8) Wrist Radial Deviation (WR). (9) Power 
grips (PG). (10). Rest position “no movement” (NM). 
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Tableau 5.1 Muscles involved in identified upper limb movements 

  Main muscles involved Main sensors 

El
bo

w
 m

ov
em

en
ts

 
EF 

-Biceps brachii 

-Triceps brachii 

-Brachioradialis 

-Brachialis 

-strain gauge bracelet (B) 

-IMU (2) 

 EE 
-Triceps brachii 

-Biceps brachii 

-Anconeus 

Fo
re

ar
m

 m
ov

em
en

ts
 

FP 
-Pronator teres 

-Pronator quadratus 

-Supinator 

-Biceps brachii 

-strain gauge bracelet (AB) 

-IMU (1) 
FS 

-Supinator 

-Pronator Teres 

-Pronator quadratus 

W
ris

t m
ov

em
en

ts
 

WF 
-Flexor carpi radialis 

-Flexor carpi ulnaris 

-Flexor digitorum superficialis 

-strain gauge bracelet (AB) 

-IMU (1) 

 

WE 

-Extensor carpi radialis longus 

-Extensor carpi radialis brevis 

-Extensor digitorum 

-Extensor carpi ulnaris 
WL -Extensor carpi ulnaris 

WR 
-Abducto Polilicis longus 

-Flexor carpi radialis 

-Extensor carpi radialis longus 

-Extensor carpi radialis brevis H
an

d 

m
ov

em
e

nt
s PG - extrinsic muscles of hand -strain gauge bracelet (AB) 
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The gauge AB6 was vertically aligned with B6, and the other gauges of strain gauge bracelet AB 

were placed going round the forearm (X-axis of Fig. 5.2) following the positive direction of the 

right-hand rule (AB6, AB5, AB4, AB3, AB2, AB1). The letters AB were used to identify this bracelet 

5.5 Circuits and systems 

For each stain gauge bracelet, six analog channels were necessary to record the deformation of the 

six strain gauges in real time. For inertial unit-based sensors, six signals were acquired, namely 

three linear accelerations and three angular velocities. All sensors had wireless communication. 

5.5.1 Microcontroller 

As presented in Fig. 5.4, the microcontroller was an ESP32 (Espressif Systems, China). It has a 

built-in USB-to-serial converter, a lithium ion/polymer charger, and general purpose input/output 

(GPIO). It contains a universal asynchronous receiver-transmitter (UART), a serial peripheral 

interface (SPI), and inter-integrated circuit (I2C) as a communication bus. I2C is a serial protocol 

having a two-wire interface for connecting low speed devices. The UART protocol was used to 

establish a communication between the microcontroller and the computer. On the computer, Matlab 

was run to save and visualize the incoming data. The ESP32 has a 240 MHz dual core processor 

and an integrated 520 KB SRAM that can perform the calculations with a large number of 

operations for onboard real-time movement identification. The I2C protocol was used to connect 

the microcontroller to the BNO055 IMU. 

The ESP32 supports both WiFi and Bluetooth (Classic/LE), meaning that it is suitable to user for 

wireless projects. It comes with a proprietary communication protocol ESP-NOW, which enables 

a 2-way wireless communication between several ESP32 boards. This protocol was used as it is 

easy to implement, and the transmissions frequency (>100Hz) is fast enough for our application.  

5.5.2 IMU sensor design 

As presented in Fig. 5.4, the system used the low-cost commercial Bosh Sensortec BNO055 IMU 

(Adafruit, USA) including a tridimensional (3D) accelerometer, a (3D) gyroscope, and a 

magnetometer. The work done by [28] motivated the choice of this sensor. Fig. 5.4 shows the 

wiring diagram. 
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Figure 5.4 IMU circuit. BNO055 IMU (left) connected to the ESP32 microcontroller (right) using 
the I2C protocol. The BNO055 IMU has a 3,3V input that was connected directly into the ESP32 
3,3V output (red wire). A ground (GND) pin was connected to GND on the ESP32 (black wire), 

the I2C clock pin (SCL) was connected to the corresponding ESP32 pin 22 (yellow wire), and the 
I2C data pin (SDA) was connected to the corresponding ESP32 pin 23 (blue wire). The image 

was adapted from [29]. 

The BNO055 IMU was connected to the ESP32 microcontroller by using an I2C protocol (Fig. 

5.4). Two IMU sensors, namely IMU 1 and 2, were implemented by following this way. 

The code for data acquisition was implemented by following the protocol provided by Adafruit 

[29], briefly: for each sensor, a BNO055 object was initialized; each sensor provided linear 

accelerations and angular velocities along the 3 Cartesian axes; a specific identifier was assigned 

to each sensor to identify the origin of the data following the ESP-NOW protocol [30].  

To ensure that the data coming from the two BNO055 IMU were accurate, it was essential to 

calibrate these ones. The calibration was performed according to the calibration guide provided by 

MathWorks [31]. When the calibration process was completed, the code provided offset values.  

These offset values were then applied to each 3D axis of the two BNO055 IMU. 

3D printed PLA boxes were used to hold the PCB for strain gauge signal conditioning (Fig. 5.5 

(b)), and each IMU (Fig. 5.5 (b), and Fig. 5.2 (a) when strapped with a Velcro on the participant). 

The ESP32 has support for connecting a LiPoly/Lion battery. This terminal was connected to a 

Lipo 850 mAh battery (Adafruit, USA) that allowed the system to have an autonomy of 8 hours. 
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Figure 5.5 3D printed box for electronics. (a) Box (12x10x3.3 cm) containing the PCB for strain 
gauge signal conditioning. (b) Box (5.5x3.5x2.2 cm) containing the IMU circuit and a Velcro 

strap. 

5.5.3 Strain gauge-based sensor  

To record and treat the signal from the strain gauges, a PCB representing the electrical circuit (Fig. 

5.6) was designed (see Fig. 5.7). 

 
Figure 5.6 Electrical circuit for strain gauge signal conditioning showing the Wheatstone bridges 
in quarter bridge configuration, the multiplexers, the ADS1256 and the ESP32 microcontroller. 
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The PCB had a flat flexible cable connector for connecting the strain gauge bracelet. The PCB 

included six Wheatstone bridges in quarter bridge configuration. The strain gauge CF120-10AA 

had a resistance variation from 115 Ohms to 125 Ohms. The bridges converted small changes in 

resistance (± 5 Ohms) of the gauges to a voltage. The resistors of this circuit had a nominal 

resistance value of 120 Ohm with a tolerance of ± 1%. Each bridge had a trimmer potentiometer 

whose resistance rating is 500 Ohms. This selected potentiometer had 20 turns allowing to have 

good precision of ± 1Ohm which facilitated the bridge zeroing. The zeroing results to a zero-

voltage output when no-strain is applied to the gauge. It is an important step to perform before 

using the system.  

The signals from the gauges were then routed to two multiplexers. The multiplexers allow to choose 

the channel to be read by sequentially reading each of the analog inputs, as suggested by [15]. The 

selected CD74HC4067 multiplexer has sixteen channels controlled by 4 digital signals. The data 

from sixteen strain gauges can be acquired using only one input of a microcontroller. This system 

also allowed the use of a single amplifier and an analog-to-digital converter. The size of the 

acquisition system was thus reduced. It also saved equipment costs by using a single amplifier for 

several gauges.  

 
Figure 5.7 PCB for strain gauge signal acquisition. (a) ESP32. (b) FFC/FPC connector. (c) 

Wheatstone Bridge. (d) Multiplexers. (e) Power management. (f) ADS1256. 
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These analog signals were acquired and processed by the ADS1256. The ADS1256 is a low-noise 

24-bit analog-to-digital converter. It has a high acquisition frequency of 30 kSPS and can acquire 

data from 8 asymmetric inputs or 4 differential inputs. The programming of this goes through the 

ESP32 with SPI communication. The ESP32 microcontroller then retrieves the data from the 

ADS1256 in 24-bit digital format. It sends them to the computer by UART communication. 

Additionally, a 3,3 V voltage regulator has been added to provide a stable voltage source for the 

Wheatstone’s bridges. The stability of the voltage source is important to ensure the stability of 

Wheatstone’s bridges. 

This acquisition board was powered by a LiPo (Lithium Polymer) battery (Adafruit, USA) with a 

capacity of 5000 mAh at 3,7 V and a power of 18.5 W. This battery allowed the acquisition system 

an autonomy of 24 hours.  A 3D printed PLA box was used to hold all electronic devices (see Fig. 

5.5(a)). 

5.5.4 Signal Acquisition 

The sensors used wireless communication based on the ESP-NOW protocol which enables multiple 

devices to communicate without using Wi-Fi. The communication architecture is presented in Fig. 

5.8.  

A total of 12 signals from the strain gauges were recorded for each movement. Additionally, to 

these signals, the tridimensional linear accelerations and angular velocities coming from two IMUs 

were used. Combining the signals from the strain gauges and inertial units, a total of 24 signals 

were obtained. The data were sampled at a frequency of 100 Hz. This frequency was chosen to 

limit the amount of data to be processed. The human movement frequency is contained between 0 

and 20 Hz [32]; hence the Shannon Nyquist sampling theorem was respected. A Butterworth-type 

digital low-pass filter of order 4 with a cut-off frequency of 1 Hz [15] was used to filter the signal 

from the strain gauges. The first hundred data for each gauge when the participant is at rest was 

averaged and used to set an offset for the following data. The raw signals from IMUs were used. 
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Figure 5.8 Communication architecture including the ESP32 microcontroller, the two strain 
gauge bracelets B and AB, the two IMUs 1 and 2, the communication protocols ESP-NOW 
(between the ESP32 and the bracelets and IMUs) and UART (between the ESP32 and the 

computer), and the variables corresponding to the sensors output: e.g. AB1 to AB6 for the strain 
gauge bracelet AB, B1 to B6 for the strain gauge bracelet B.  ax for linear acceleration following 

X-axis, ay for linear acceleration following Y-axis, az for linear acceleration following Z-axis. gx 
for angular velocity around the X-axis, gy for angular velocity around Y-axis, gz for angular 

velocity around Z-axis The number 1 or 2 referred to IMU 1 or IMU 2. 

5.6 Results 

To analyze the ability of this system to identify movement intentions, a series of movements was 

performed. The sequence was as follows EF-NM-EE-NM-FP-NM-FS-NM-WF-NM-WE-NM-WL-

NM-WR-NM-PG-NM. After each movement, a pause with “no movement” (NM) was observed 

before doing the next movement. 

Fig. 5.9 shows the data acquired during the sequence of movements performed by the participant. 

Fig. 5.9 (a) shows the 3 linear accelerations and 3 angular velocities coming from IMU 1 which 

was placed on the hand. Fig. 459 (b) shows the 3 linear accelerations and 3 angular velocities 

coming from IMU 2 which was placed on the forearm. Fig. 5.9 (c) shows the data acquired by the 

strain gauge bracelet placed on the arm. Fig. 5.9 (d) shows the data acquired by the strain gauge 

bracelet placed on the forearm.  



81 

 

In Table 5.2, the maximum voltage variation for each strain gauge was computed per movement. 

The strain gauges that recorded a voltage variation (∆V) superior to ±1 mV were identified. This 

threshold was established to compensate the error introduced by the manual zeroing of the 

Wheatstone bridge. 

Furthermore, using the information presented in Table 5.2 the maximum ∆V in both bending 

directions were computed per column to determine which strain gauges recorded more skin 

deformation for a particular movement, and per row to determine which movement produced the 

maximum ∆V for each gauge. The results showing the strain gauge signal intensity pattern are 

displayed in Table 5.3. 

1) Elbow Flexion (EF): The largest deformations were recorded by the strain gauges B6, AB6 

and AB1, with 4.5 mV, 6.03 mV, and 4.48 mV, respectively.  Compared to the others strain 

gauges, the strain gauges AB6 and AB3 recorded the largest deformations for this movement 

in both bending directions. Compared to the other movements, the strain gauges B6, AB1, 

and AB6 recorded their highest convex deformation and B3 recorded its highest concave 

deformation. IMU 1 and IMU 2 recorded comparable angular velocities gz1, and gz2 around 

the Z-axis 

2) Elbow Extension (EE): The largest deformations were recorded by the strain gauges B1, 

B5, and B6 with -4.11mV, -2.99mV and -1.98mV, respectively. Compared to the other 

strain gauges, the strain gauges AB6 and AB1 recorded the largest deformations for this 

movement in the two bending directions. Compared to the other movements, the strain 

gauges B1, B2, and B5 recorded their largest concave deformation. IMU 1 and IMU 2 

recorded comparable angular velocities gz1, and gz2 around the Z-axis. 

3) Forearm Pronation (FP): The largest deformations were recorded by the strain gauges B2 

and B4 with 1.67 mV, 1.04 mV, respectively and AB1 and AB3 with 1.61 mV, 0.95 mV 

respectively recorded the largest deformations. Compared to the other strain gauges, the 

strain gauges B2 and B3 recorded the largest deformations for this movement in both 

bending directions. Compared to the other movements, the strain gauge B2, recorded its 

largest convex deformation. IMU 1 and IMU 2 recorded comparable angular velocities gx1 

and gx2 around the X-axis. 
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4) Forearm Supination (FS): The largest deformations were recorded by the strain gauges 

AB3, AB1, AB6 and AB2, with -1.66mV, 1.30 mV, -1.14mV, 1.02 mV respectively and B6 

with -1.14mV recorded the largest deformations. Compared to the other strain gauges, the 

strain gauges B6, and AB3 recorded the largest deformations for this movement in both 

bending directions. None of the gauges recorded their maximal deformation during forearm 

supination. IMU 1 and IMU 2 recorded comparable angular velocities gx1, and gx2 around 

the X-axis. 

5) Wrist Flexion (WF): The largest deformations were recorded by the strain gauges AB1, AB2 

and AB5 with 2.41 mV, 1.36 mV, -1.89mV respectively and B6 with 1.81 mV recorded the 

largest deformations. Compared to the other strain gauges, the strain gauges AB1 and AB5 

recorded the largest deformations for this movement in both bending directions. Compared 

to other movements, the strain gauge AB5 recorded its largest concave deformation. IMU 

1 recorded angular velocities gy1 around the Y-axis. IMU 2 placed on the forearm and did 

not record any significant movement. 

6) Wrist Extension (WE): The largest deformations were recorded by the strain gauges B4 and 

B6 with 1.34 mv, 1.35 mV, respectively as well as AB1, AB2, AB3 and AB4 with -3.40mV, 

1.55 mV, 1.52 mV, 1.06 mV respectively recorded the largest deformations. Compared to 

the other strain gauges, AB2, AB6 recorded the largest deformations for this movement in 

both bending directions. Compared to the other movements, strain gauge B4 recorded its 

largest convex deformation. IMU 1 recorded angular velocities gy1 around the Y-axis. IMU 

2 placed on the forearm did not record any significant movement. 

7) Wrist Ulnar deviation (WL): The largest deformations were recorded by the strain gauge 

B6 with 1.39 mV as well as AB1, AB2 and AB3 with 2.65 mV, 1.58 mV, 2.19 mV 

respectively recorded the largest deformations. Compared the other strain gauges, AB1 and 

B3 recorded the largest deformations for this movement in both bending directions. 

Compared to the other movements, the strain gauges B1 and AB3 recorded their largest 

concave deformations. IMU 1 and IMU 2 recorded comparable angular velocities gz1 and 

gz2 around the Z-axis. 

8) Wrist Radial deviation (WR): The largest deformations were recorded by the strain gauges 

B2 and B6, with 1.26 mV, 1.02 mV respectively as well as AB1, AB2, AB4, AB5 and AB6 
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with -4.32mV, 1.67 mV, 1.22 mV and 1.14 mV respectively recorded the largest 

deformations. Compared to the other strain gauges, AB2 and AB1 recorded the largest 

deformations for this movement in both bending directions. Compared to the other 

movements, the strain gauges B5, AB4, and AB5 recorded their largest convex deformation 

and AB1, AB6 recorded its largest concave deformation. IMU 1 and IMU 2 recorded 

comparable angular velocities gz1, and gz2 around the Z-axis. 

9) Power Grips (PG): The largest deformations were recorded by the strain gauges AB1, AB2 

and AB3 with 1.71 mV, 1.81 mV and -2.32 mV respectively recorded the largest 

deformations. Compared to the other strain gauges, AB2, AB3 recorded the largest 

deformations for this movement in both bending directions. Compared to the other 

movements, the strain gauges AB2 recorded its largest convex deformation and AB3 

recorded its largest concave deformation. IMU 1 recorded its angular velocities gy1 around 

the Y-axis. IMU 2 placed on the forearm did not record any significant movement. 

 

Figure 5.9 (a) 3D linear accelerations and 3D angular velocities from the IMU 1 placed on the hand. (b) 3D 
linear accelerations and 3D angular velocities from the IMU 2 placed on the forearm. (c) Data from the six 

strain gauges in the bracelet B placed on the arm. (d) Data from the six strain gauges in the bracelet AB 
placed on the forearm. 
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Tableau 5.2 Peak signal intensity for each strain gauge per movement(mV) 

 EF EE FP FS WF WE WL WR PG 

B1 -0.62 -4,11 -0.71 -0.43 -0.32 -0.32 0.13 -0.37 -0.14 

B2 1.02 -1.15 1.67 0.72 1.30 0.94 0.74 1.26 0.51 

B3 -1.19 -0.98 -0.98 -0.70 -0.72 -0.69 -0.74 -0.62 -0.63 

B4 0.21 1.24 1.09 0.52 0.50 1.34 0.85 0.76 0.66 

B5 -1.22 -2.99 0.39 -0.36 0.20 0.26 0.44 0.45 0.35 

B6 4.50 -1.98 -0.85 1.25 1.81 1.45 1.39 1.02 0.80 

AB1 4.48 1.38 1.61 1.30 2.41 -3.40 2.65 -4.32 1.71 

AB2 0.82 0.44 0.60 1.01 1.36 1.55 1.58 1.67 1.81 

AB3 -1.54 0.76 0.95 -1.66 0.89 1.52 2.19 0.85 -2.42 

AB4 -0.45 -0.95 -0.26 0.65 -0.46 1.06 0.30 1.22 0.79 

AB5 0.65 0.64 0.24 0.59 -1.89 0.91 0.35 1.14 0.62 

AB6 6.03 1.54 0.69 -1.14 -0.88 -0.86 -0.41 -1.32 0.29 
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Tableau 5.3 Strain gauge signal intensity pattern 

 Maximum voltage variation per strain gauge Maximum voltage variation per movement 

 (+) mV max (-) mV Min (+) mV max (-) mV max 

EF B6, AB1, AB6 B3 AB6 AB3 

EE - B1, B2, B5, B6, AB4 AB6 AB1 

FP B2 - B2 B3 

FS - - B6 AB3 

WF - AB5 AB1 AB5 

WE B4 - AB2 AB6 

WL B1, AB3 - AB1 B3 

WR B5, AB4, AB5 AB1, AB6 AB2 AB1 

PG AB2 AB3 AB2 AB3 

 

5.7 Discussion 

The objective of this study was to develop a novel wearable system to identify intentions of 

movement by combining strain gauges and inertial measurement units. The following discussion 

addresses A. the ability of this system to identify movement intentions, and B. the design of the 

sensor system combining strain gauges and IMUs.  

5.7.1 Identification of movement identification 

Table 4.1 identifies the muscles responsible for each movement. Fig. 5.2 shows the placement of 

the sensors regarding the muscles involved in the upper limb motion. A mapping was established 

between the movements performed by the subject (Fig. 5.3) and the signals recorded by the strain 

gauges (Fig. 5.9). 

1) Elbow Flexion (EF): The strain gauge B6 was placed on the biceps brachii which explains 

the high intensity signal (Fig. 5.9). By going around the arm with the strain gauge bracelet 
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(AB), AB1 and AB6 were placed near the brachioradialis, which explained the obtained 

deformation. However, the gauge B6 was expected to record the largest deformation as the 

biceps brachii is the main muscle responsible for the forearm flexion. By folding the 

forearm on the arm (Fig. 5.3 (1)), the biceps brachii came into contact with the forearm 

which explains that the gauge AB6 recorded more deformations. 

2) Elbow Extension (EE): The strain gauges B1 and B6 were placed on the biceps brachii 

which extends during the elbow extension. It is therefore normal to record deformations in 

the opposite direction to the bending movement for gauges B6 and B1(Fig. 5.9(c)). The 

signal of B6 went from positive for elbow flexion to negative for elbow extension. The 

strain gauge B5 was placed close to the Brachialis which also extends during elbow 

extension. The gauges AB1 and AB6 were placed near the Brachioradialis which have 

recorded deformations. These measurements can be explained by the nature of the 

extension movement which tends to stretch the forearm skin at full range of motion. 

3) Forearm Pronation (FP): The strain gauges AB1 and AB3 were placed around the pronator 

teres which is mainly responsible for the forearm pronation, recording therefore signals 

with high intensity. The biceps brachii is also involved in the forearm pronation. The biceps 

movement creates large skin deformation of the skin around the arm which matches the 

high intensity signals recorded by strain gauges B2 and B4. 

4) Forearm Supination (FS): The strain gauges AB1, AB2 and AB3 were located around the 

supinator, which is responsible for the forearm supination. The strain gauges AB1 and AB3 

were involved in both pronation, and supination. B6 is centered on the biceps brachii, which 

is involved in this movement. The forearm pronation and supination are like a twisting 

movement around the forearm axis, which causes the forearm skin to stretch, recording 

therefore relevant deformations. 

Most of the muscles involved in the subsequent movements are in the forearm. Hence, the strain 

gauges of the bracelet (B) placed on the arm recorded decreasingly weak signals (Fig. 5.9 (c)). The 

forearm muscles are packed side by side or overlapped so it was more difficult to make a link 

between the muscles involved in the movement and of the strain gauges positions  
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5) Wrist Flexion (WF): The strain gauges AB1, AB2, and AB5 were close to the muscle group 

involved in wrist flexion. The gauge AB1 gauge is centered on the flexor carpi radialis, 

which explains a stronger signal than the other strain gauges. 

6) Wrist Extension (WE): The strain gauges AB1, AB2, AB3, and AB4 were near the muscles 

involved in the wrist extension. AB1 is near the extensor carpi ulnaris, and the digitorum 

extender which explains a stronger signal than the other gauges. 

7) Wrist Ulnar deviation (WL): The muscles responsible for the ulnar deviation of the wrist is 

the extensor Carpi ulnaris. The strain gauges AB1 and AB3 were placed near this muscle, 

which explains the recorded deformations. 

8) Wrist Radial deviation (WR): The muscles responsible for the radial deviation of the wrist 

are the flexor carpi radialis, extensor carpi radialis longus, extensor carpi radialis Brevis. 

This muscles group goes almost all around the forearm, which explains the deformations 

recorded by most strain gauges from the forearm bracelet AB. 

9) Power Grips (PG): The gripping movement mainly involves the extrinsic and intrinsic hand 

muscles. Some forearm muscles (e.g., flexor digitorum superficialis) are involved in power 

grips which explains the signals recorded by strain gauges AB1, AB2, and AB3. 

The data from IMU 1 and 2 (Fig 5.9 (a), (b)) provided additional information about the motion. 

Although it was difficult to have a visual interpretation of the linear acceleration’s data, the angular 

velocities provided information used to derive a relation between the graphs obtained and the 

movements. 

For the movements of EF, EE, FP and FS it was expected to register comparable signals of linear 

accelerations and angular velocities from the two IMUs placed at the forearm and arm. Indeed, for 

these movements the IMUs were aligned along the same axis (Fig, 5.2 (a)) and the wrist remained 

in neutral position which was similar to two IMUs placed on a rigid bar. Observing the graphs 

confirmed our assertion. These movements were performed around the same axe in opposite 

direction, and a change of sign was clearly noticed in the signals (Fig. 5.9 (a), (b)) 

The movements of WF, WE, WR, WL showed a quasi-static angular acceleration for the IMU placed 

on the forearm (Fig. 5.9 (b)). Indeed, only the wrist performed these movements, so that the IMU 

1 placed on the hand recorded accelerations. The gripping movement is an opening and closing of 
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the hand, so neither acceleration nor velocities should be relevantly recorded by the IMUs. As the 

participant did not maintain a perfect static position, slight accelerations were observed in (Fig. 5.9 

(a), (b)).  

The results showed that the strain gauge bracelet placed on the forearm recorded signals that could 

make a distinction between wrist movements and the power grips movement. The strain gauge 

bracelet placed on the arm recorded signals that could make a distinction between various forearm 

movements, e.g. pronation vs supination. Also, the combination of strain gauges that recorded 

maximum ∆V is unique for each movement (see Table 5.3). This uniqueness represents a pattern 

to identify upper limb movement.  

It is worth noting in Table 5.3 that: 

1) There was no strain gauge which measured its highest deformation for forearm supination. 

Hence, no strain gauge was optimally placed to detect forearm supination.   

2) The strain gauge AB6 was the most impacted one by elbow flexion, recording then its 

maximal ∆V, AB6 is a good discriminant for the elbow flexion.  

3) The strain gauge B2 was the most impacted one by the forearm pronation, recording then 

its maximal ∆V .  B2 is a good discriminant for the forearm pronation. 

4) The strain gauge AB5 was the most impacted one by the wrist flexion, recording then its 

maximum ∆V . AB5 is a good discriminant for the wrist flexion. 

5) The strain gauge AB1 was the most impacted one by the wrist radial deviation, recording 

then its maximum ∆V . AB1 is a good discriminant for the wrist radial deviation. 

6) The strain gauges AB2 and AB3 were the most impacted one the power grips, recording 

then their maximum ∆V . These ones are good discriminants for the power grasp. 

The impacts of adding IMUs to the system can be summarized as follows: 

1) The angular velocities allowed the identification of the beginning and end of each 

movement in the sequence. 

2) The position of the limb could be inferred by using angular velocities. 
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3) The linear acceleration contribution is unclear at this point. However, further analysis using 

different techniques of artificial intelligence, such as machine learning with deep neural 

network, could provide more information regarding the kinematics data. 

The strain gauges provided information about muscle contraction and the IMUs provided 

information about the motion. Comparing to the work done by [15], [23]. These results showed the 

ability of this sensor to record signals making it possible to distinguish 9 movements of the upper 

limb and therefore confirming the initial RH. 

5.7.2 Sensor design 

The proposed system was compact and portable making it ideal for daily activities (Fig. 5.7 (a), 

(b)).  The developed bracelet used strain gauges and a kinesiological tape which are commercially 

readily available. The IMU 1 placed on the hand was not optimal as it was relatively large and 

cumbersome. However, a smaller IMU system could solve this issue.  

Each strain gauge in the matrix collected a specific signal. The third and fourth maximum ∆V (see 

Table 5.2) were recorded by gauges B1(4.48 mV) and AB1(-4.11mV) which were placed 

horizontally (Fig. 4.1). Aligning the strain gauges in the direction of the highest strain [15] was not 

optimal since the sensor did not record the deformation about the other axis. This information can 

be very useful for a future classification algorithm to distinguish between different movements. 

The main design requirements (DR) of this system were achieved: 

DR 1: It must be able to measure multi-axial skin deformations: Indeed, measuring strain on 

multiple axes is therefore important to better capture skin deformation due to muscle activity. 

DR 2: It must be wearable.  Indeed, the flexible PCB-based strain gauge matrix fabrication method 

is systematic, so the shape, size and orientation of the gauges can be changed depending on the 

application. Different strain gauge matrices can be made by using flexible PCBs and placed in 

different sites on the human body to collect different information. 

DR 3: It must be able to be used several times in daily three-dimensional movements: Indeed, the 

flexible PCB has also provided a good solid connection with the gauges that prevented the 

connections to break or unsolder during movements as a solution to the robustness issues noted in 

[15].  
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The number of strain gauges, their orientation as well as the position of the strain gauge bracelet 

are important factors that can be optimized by referring to knowledge of human anatomy. This 

knowledge does not need to be specific as with sEMG which requires the sensors to be placed on 

the right muscle to detect the right signal [12]. The developed system had 12 channels of strain 

gauges, and more strain gauges can be added if necessary. Contrarily, it would be nearly 

impossible/or too bulky to place the same number of sEMG electrodes on a person without 

interfering with his daily activities. Also, the frequency of data acquisition of the proposed system 

was customizable between 40 Hz to 200 Hz which is far less than sEMG sampling frequency (1000 

Hz) [14]. A technical limitation related to the use of Wheatstone bridge was the need to recalibrate 

each bridge after a certain amount of uses. A subsequent work can investigate that issue. 

5.8 Conclusion 

The objective of this research was to develop a novel wearable system to identify intentions of 

movement by combining strain gauges and inertial measurement units. The proposed system is 

composed of 1. two strain gauge bracelets using 6 strain gauges each, connected to a flexible 

printed circuit board and 2. two inertial measurement units. To our knowledge, this system is the 

first portable battery-powered sensor using on-board electronics for strain gauge signal 

conditioning to detect human movement intentions. The system was tested on the upper limb, and 

successfully identified 9 main movements through the variations in signal intensity of the strain 

gauges. These results show the potential of such a sensory system to become a smart wearable 

sensory system to detect human movement intention. The future perspectives will be to extend the 

system, e.g., to the lower limbs, and to identify complex movement combinations by using pattern 

recognition algorithms with such sensory systems. Future applications could target human 

computer interfacing. 
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CHAPITRE 6 RÉSULTATS COMPLÉMENTAIRES 

Ce chapitre a pour but de décrire les résultats qui ont été obtenus suite à l’implémentation des 

algorithmes d’apprentissage profond pour l’identification des intentions de mouvements. Dans un 

premier temps, les résultats obtenus de la comparaison des modèles LSTM et CNN-LSTM sont 

présentés, suivis par les résultats de la recherche des hyperparamètres et ensuite la quantification 

de l’impact des données cinématiques sur les résultats  

6.1 Comparaison des modèles 

Le premier modèle qui a été développé est le modèle LSTM.  Le choix des paramètres initiaux 

était, pour la plupart, arbitraire. Par la suite, les tests ont permis de déterminer un ensemble de 

paramètres de référence pour former un modèle de référence Figure 4.17 dont les hyperparamètres 

sont présentés dans le Tableau 6.1. 

Tableau 6.1 Hyperparamètres du modèle de référence 

Taille des lots 100 

Nombre d’itérations 50 

Terme de régularisation 0.02 

Taux d’apprentissage 1e-03 

Decay 1e-05 

Dropout 0.2 

 

Le Tableau 6.2 résume les résultats présentés dans la matrice de confusion obtenus sur l’ensemble 

de tests pour le modèle LSTM présenté à la Figure 6.3 et celle obtenue sur l’ensemble test en 

utilisant le modèle CNN-LSTM présenté à la Figure 6.4. En termes de performance de 

classification, le modèle LSTM a atteint une précision de classification de 92.5% et le modèle 

CNN-LSTM a quant à lui atteint 95.1%. En général, le modèle CNN-LSTM a obtenu une précision 

de classification plus élevée par mouvement comparé au modèle LSTM. Ces résultats sont 

présentés dans le Tableau 6.2. Cependant, le modèle LSTM a surpassé le modèle CNN-LSTM pour 

certains mouvements. En effet, le modèle LSTM a obtenu une précision de classification de 100.0% 

pour la pronation de l’avant-bras (FP), et 99.0% pour la flexion du poignet (WF) tandis que le 
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modèle CNN_LSTM a obtenu 95.1% et 98.0% respectivement. Les deux modèles ont aussi des 

performances similaires pour les mouvements de déflexion radiale du poignet (WR) et de 

préhension (PG) avec 96.0% et 100% de précision de classification respectivement. Pour la mesure 

de performance basée sur le MCC, section 2.6, Le modèle LSTM a obtenu un score de 0.92 et le 

modèle CNN-LSTM a obtenu un score de 0.95. En outre, cela a pris 20.4s pour entraîner le modèle 

CNN-LSTM et 19.3s pour entraîner le modèle LSTM.  

Tableau 6.2 Comparaison des résultats des modèles LSTM et CNN-LSTM 

 NM EF EE FP FS WE WF WR WL PG TOTAL MCC t(s) 

Pr
éc

is
io

n 
de

 

cl
as

si
fic

at
io

n 

(%
) 

LSTM 60.40 98.02 98.02 100 95.05 98.02 99.01 96.04 80.20 100 92.48 0.92 19.3 

CNN-

LSTM 
72.28 99.01 100 95.05 98.02 100 98.02 96.04 92.08 100 95.05 0.95 20.4 

 

Il arrive que des modèles apprennent des caractéristiques spécifiques à l’ensemble d’entraînement. 

En effet, en entrainant un modèle suffisamment longtemps sur un ensemble de données (ici 

l’ensemble d’entrainement), il est capable d’atteindre une précision de classification élevée. 

Cependant, lorsque ce modèle est utilisé sur un nouvel ensemble de données (ici l’ensemble de 

validation), il va obtenir une faible précision de classification. C’est le problème de généralisation 

[58]. Il est donc important de regarder les courbes d'apprentissages de l'ensemble d'entraînement 

et de validation présentée sur la Figure 6.1 et la Figure 6.2 pour observer lorsque le sur-

apprentissage commence à se produire. L’observation de ces graphiques montrent que la précision 

de classification augmente au fur et à mesure que le nombre d’itération augmente (epoch) pour 

l’ensemble d’entrainement et l’ensemble de validation, il n’y a donc pas de sur apprentissage. Le 

surapprentissage est observé sur une courbe lorsque la précision de classification sur les données 

d’entrainement augmente tandis que celle sur l’ensemble de validation diminue [58]. 
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Figure 6.1 : (a) courbe de la précision de classification du modèle LSTM, (b) courbe de la 
fonction coût du modèle LSTM 

  

Figure 6.2 : (a) courbe de la précision de classification du modèle CNN-LSTM, (b) courbe de la 
fonction coût du modèle CNN-LSTM 
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Figure 6.3 Matrice de confusion du modèle LSTM 
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Figure 6.4 Matrice de confusion du modèle CNN-LSTM 

 

Pour résumer la comparaison des modèles, le modèle CNN-LSTM a surpassé le modèle LSTM. 

Avec une précision médiane de 95,1 % (MCC = 0,95), contre 92,5 % (MCC = 0,92). Cette 

comparaison aurait dû inclure plusieurs essais pour faire la moyenne, cependant, due à la contrainte 

de temps le nombre d’essais a été limité. Le modèle CNN-LSTM a été choisi pour la recherche 

d'hyperparamètres. Cependant, la sélection de meilleurs paramètres pour le modèle LSTM pourrait 

conduire ce modèle à potentiellement surpasser le modèle CNN-LSTM. 
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6.2 Recherche des hyperparamètres 

Les résultats de la recherche d'hyperparamètres ont été compilés ci-dessous. Pour chaque valeur 

hyperparamètre, cinq valeurs ont été choisies pour déterminer leur impact sur l’apprentissage du 

modèle. Les valeurs optimales pour chaque hyperparamètre ont été marquées en gras. 

Les hyperparamètres testés sont présentés. Les tableaux à gauche présentent la valeur des 

hyperparamètres testée ainsi que le MCC et la précision de classification obtenue pour chaque 

valeur d’hyperparamètre. Les figures à droite présentent l’évolution de la précision pour les 

ensembles tests et validation en fonction des valeurs des valeurs des hyperparamètres. 

 

Tableau 6.3 Résultat de la variation du taux 
d'apprentissage 

𝝀 
Précision de 

classification 
MCC 

1e-01 10.0 0 

1e-02 89.8 0.89 

1e-03 95.2 0.95 

1e-04 86.5 0.85 

1e-05 36.3 0.31 
 

 

Figure 6.5 Évolution de la précision pour les 
ensembles tests et validation en fonction du taux 

d’apprentissage 
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Tableau 6.4 Résultat de la variation du 
nombre de filtres pour le CNN 

Nombre  

de filtres 

Précision de 

 Classification (%) 

MCC 

9 91.4 0.905 

18 93.3 0.925 

32 95.6 0.951 

64 95.2 0.947 

128 95.4 0.949 
 

 

Figure 6.6 Évolution de la précision pour les 
ensembles tests et validation en fonction du 

nombre de filtres pour le CNN 

 

Tableau 6.5 Résultat de la variation du 
nombre de neurones pour le LSTM 

Nombre de 

 neurones  

Précision de  

Classification (%) 

MCC 

9 92.7 0.919 

18 92.8 0.920 

32 95.0 0.945 

64 93.6 0.929 

128 95.8 0.954 
  

Figure 6.7 Évolution de la précision pour les 
ensembles tests et validation en fonction du 

nombre de neurones pour le LSTM 
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Tableau 6.6 Résultat de la variation du terme 
de régularisation 

Terme de  

régularisation 

Précision de  

Classification (%) 

MCC 

0.0 94.6 0.939 

0.001 93.4 0.926 

0.002 95.0 0.944 

0.01 94.3 0.936 

0.02 93.5 0.928 
 

 

 

Figure 6.8 Évolution de la précision pour les 
ensembles tests et validation en fonction du terme 

de régularisation 

Tableau 6.7 Résultat de la variation du 
nombre d'échantillon par lot 

Nombre 
d’échantillon 

par lot 

Précision de 

Classification 
(%) 

MCC 

25 95.3 0.948 

50 94.7 0.941 

100 95.5 0.951 

200 95.0 0.944 

300 93.2 0.924 
 

 

Figure 6.9 Évolution de la précision pour les 
ensembles tests et validation en fonction du 

nombre d’échantillon par lot 

 

Il est toujours important de s’assurer que le modèle ne soit pas surentraîné sur les données 

d’entraînement. Il est donc important d’analyser les courbes d’apprentissages pour chacune des 

valeurs d’hyperparamètres testées. Ces courbes sont présentées en Annexe B. 

Le Tableau 6.4 résume les résultats qui ont été obtenus par la recherche séquentielle des 

hyperparamètres. 
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Tableau 6.8 Résumé des valeurs optimales d’hyperparamètres 

Taux d’apprentissage 1e-03 

Nombre de filtres pour le CNN 32 

Nombre de neurones dans le LSTM 128 

Terme de régularisation 0.002 

Batch size 100 

Après avoir déterminé les valeurs optimales d’hyperparamètres, la prochaine étape a consisté à 

déterminer l’impact des données inertielles sur la précision de classification. 

6.3 Impact des données inertielles  

La recherche des hyperparamètres a conclu que les hyperparamètres de bases sont ceux qui ont 

permis d’avoir les meilleurs résultats de classification. Ces paramètres ont donc été utilisés sur les 

signaux provenant des jauges de déformations. La matrice de confusion obtenue sur l’ensemble 

contenant exclusivement les signaux des jauges de déformation est présentée à la Figure 6.6. Le 

Tableau 6.5 montre la comparaison entre le modèle utilisant uniquement les signaux provenant des 

jauges de déformations et le modèle de référence utilisant l’ensemble de données (IMUs et jauges 

de déformation).  

En termes de performance de classification, le modèle utilisant uniquement les signaux provenant 

des jauges de déformation a obtenu une précision de classification de 89.3%. Le modèle de 

référence a obtenu une précision de classification de 95.1%. Le modèle utilisant l’ensemble des 

données (IMUs et jauges de déformation) a obtenu de meilleure précision de classification comparé 

au modèle utilisant uniquement les jauges de déformation, Tableau 6.5. Cependant, on remarque 

que le modèle utilisant uniquement les signaux provenant des jauges de déformations a surpassé le 

modèle de référence pour certains mouvements. En effet, ce modèle a obtenu une précision de 

classification de 99.0% pour la pronation de l’avant-bras (FP), et 100.0 % pour la flexion du poignet 

(WF) tandis que le modèle CNN_LSTM a obtenu 95.1% et 98.0% respectivement. En outre, cela 

a pris 20.4s pour entraîner le modèle de référence et 19.9s pour entraîner le modèle utilisant les 

jauges de déformations uniquement, des temps assez comparables. 
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Tableau 6.9 Comparaison des modèles LSTM et CNN-LSTM 

 NM EE EF FP FS WE WF WR WL PG TOTAL MCC t(S) 

Pr
éc

is
io

n 
de

 

cl
as

si
fic

at
io

n 

(%
) 

Jauges 45.5 98.0 95.1 99.0 97.0 93.1 100.0 91.1 76.2 98.2 89.3 0.88 19.9 

IMUs+ 

jauges 
72.3 99.0 100.0 95.1 98.0 100.0 98.0 96.0 92.1 100.0 95.1 0.95 20.4 

 

Comme il a été mentionné dans la section 6.1, il est toujours important d’observer les courbes 

d’apprentissages afin de s’assurer que le modèle ne soit pas surentraîné. Les courbes 

d’apprentissages du modèle utilisant les jauges de déformations sont donc présentées à la Figure 

6.5. L’observation de ces graphiques montrent que la précision de classification augmente au fur 

et à mesure que le nombre d’itération augmente (epoch) pour l’ensemble d’entrainement et 

l’ensemble de validation, il n’y a donc pas de sur apprentissage.  

  

Figure 6.10 (a) : courbe d’apprentissage du modèle CNN-LSTM, (b): courbe de la fonction coût 
du modèle CNN-LSTM 
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Figure 6.11 Matrice de confusion du modèle entraîné exclusivement sur les signaux provenant 
des jauges de déformation 
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CHAPITRE 7 DISCUSSION GÉNÉRALE 

L’objectif général de ce projet de maîtrise qui était de développer un système portable pour 

identifier les intentions de mouvement en combinant des jauges de déformation et des centrales 

inertielles a été atteint. Dans cette section, un résumé de la discussion de l’article est présenté. 

Ensuite, une discussion sur les résultats complémentaires portant sur l’entraînement d’un réseau de 

neurones profond et la classification de neuf mouvements du membre supérieur ainsi qu’une 

position dite de repos est présentée, le tout suivi de limites de l’étude et les perspectives de 

recherche. 

7.1 Synthèse de l’article scientifique 

7.1.1 Détection d’intention de mouvement 

Les résultats ont montré que le bracelet de jauges de déformation placé sur l'avant-bras a enregistré 

des signaux qui ont été utilisés pour distinguer les différents mouvements du poignet et le 

mouvement de préhension. Le bracelet placé sur le bras a enregistré des signaux qui ont été utilisés 

pour distinguer les mouvements de l'avant-bras. En outre, l’analyse de l’intensité des signaux a 

révélé que la combinaison de jauges qui ont enregistré un ∆V maximal est unique pour chaque 

mouvement ce qui pourrait être utilisé comme modèle pour identifier les mouvements du membre 

supérieur. En outre, les centrales inertielles en plus de fournir de l’information sur la cinématique 

du mouvement, elles ont permis d’identifier de façon claire le début et la fin de chaque mouvement 

de la séquence de mouvements à l’étude. 

En somme, les jauges de déformations ont fourni de l’information sur la contraction musculaire et 

les IMU sur la cinématique du mouvement. Les résultats préliminaires obtenus ont prouvé la 

capacité de ce type de capteurs à enregistrer des signaux permettant de distinguer 10 mouvements 

du membre supérieur. 

7.1.2 Fabrication du capteur 

Le système développé comprend deux types capteurs : un système d’acquisition des signaux 

provenant des jauges de déformation et une centrale inertielle. Les deux capteurs ont une dimension 

de [12x10x3.3 cm] et [5.5x3.5x2.2 cm] respectivement. Le système est donc compact et portable, 

ce qui le rend idéal pour les activités quotidiennes. Le système utilise des jauges de déformation, 
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une bande kinésiologique, une centrale inertielle BNO055 qui sont des matériaux peu dispendieux 

disponibles dans le commerce.  

Ces travaux ont prouvé que la mesure des déformations sur différents axes est importante pour 

mieux capturer la déformation de la peau due à l'activité musculaire. La méthode fabrication des 

matrices des jauges de déformations basées les PCBs flexibles permettent de placer ces capteurs 

sur différents sites du corps humain pour collecter différents signaux. Cette technique a également 

permis d’avoir une connexion solide avec les jauges empêchant celles-ci de se rompre ou de se 

dessouder lors des mouvements. Le nombre de jauges de déformation, leurs orientations ainsi que 

la position du bracelet sont des facteurs importants qui peuvent être optimisés en se référant aux 

connaissances de base de l'anatomie humaine.  

7.2 Comparaison des modèles de classification 

L’ajout d’une couche de convolution unidimensionnelle avant la couche LSTM a permis 

d’augmenter la précision de classification de 2.6% pour atteindre 95.1%. Ces résultats sont en 

adéquation avec nos attentes, car l’utilisation des couches de convolutions est une excellente 

méthode pour l’extraction des caractéristiques des signaux. Cependant, la capacité des réseaux de 

convolutions à extraire des caractéristiques dépend fortement des valeurs d’hyperparamètres tels 

que le nombre de filtres, le pas, les couches de mise en commun, etc. Ainsi, pour avoir une 

extraction de caractéristiques optimale il est important de bien déterminer ces paramètres en 

effectuant plusieurs tests. Ces tests sortent du cadre de cette étude, mais pourraient expliquer 

pourquoi le modèle LSTM a eu de meilleures précisions de classification que le modèle CNN-

LSTM pour les mouvements de pronation de l’avant-bras et de flexion du poignet. Aussi, le MCC 

du modèle CNN-LSTM est plus proche de 1 que celui du modèle LSTM ce qui démontre que le 

modèle CNN-LSTM se rapproche plus d’un classificateur idéal. 

Par ailleurs, le temps d’entraînement du modèle CNN-LSTM est de 1.1s plus élevé que celui du 

modèle LSTM. Cela est prévisible, car l’ajout d’un réseau de convolution avant le réseau de 

neurones récurrents (LSTM) augmente le nombre de paramètres que le réseau doit mettre à jour 

dans le processus d’apprentissage. En effet, le modèle LSTM avait un total de 17,424 paramètres 

à entraîner tandis que le modèle CNN-LSTM avait un total de 21,296 ce qui représente un ajout de 

3,872 paramètres.  
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7.3 Recherche d’hyperparamètres 

Les résultats obtenus par la recherche d’hyperparamètres ont confirmé que les valeurs 

d’hyperparamètres utilisées dans le modèle de base étaient pour la majorité optimale. En effet, 

seule l’augmentation des neurones dans les couches récurrentes a prouvé avoir un impact sur la 

précision de classification. Le modèle avec 128 neurones à la place des 32 neurones de bases, a 

permis d’augmenter la précision de classification de 0.8% pour atteindre 95.8%. Cependant, cela 

représente quatre fois plus de neurones soit 199,104 paramètres supplémentaires pour une 

augmentation de 0.8%. En plus, le temps d’entraînement est passé de 20.4s à 23.3s. 

Il est important de noter que la méthode de recherche séquentielle des hyperparamètres n’est pas 

optimale. Une recherche par grille ou d’autres méthodes plus avancées qui procèdent à une 

combinaison aléatoire des hyperparamètres sont plus recommandées. Cependant, cette recherche 

préliminaire d’hyperparamètres a permis d’établir les bases pour de futures études plus 

approfondies. 

7.4 Impact des données inertielles 

Les résultats présentés à la section 6.3 ont démontré que la présence des données inertielles a permis 

d’augmenter de manière significative la précision de l’algorithme de classification de mouvements. 

En effet, les données inertielles ont permis d’augmenter la précision de classification d’environ 

5.7%. Ce résultat est en adéquation avec les travaux effectués par [22] et [84] qui ont reporté que 

les informations cinématiques extraites des accéléromètres peuvent améliorer la précision des 

algorithmes de classification des mouvements basés sur les sEMG.   

7.5 Limites et perspectives 

Bien que l’objectif général de ce projet de recherche ait été atteint, le transfert éventuel du système 

et de l’algorithme de classification dans des applications de la vie quotidienne n’est pas 

envisageable à court terme en raison de plusieurs limitations. Ces limitations ouvrent la voie à de 

nouvelles recherches. 

Conditionnement du signal provenant des jauges de déformations : 
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Une limitation technique liée à l'utilisation du pont de Wheatstone est la nécessité de rééquilibrer 

chaque pont après un certain nombre d'utilisations (généralement 20). Ceci peut être un 

inconvénient pour développer un système qui pourrait être utilisé pour les activités quotidiennes. 

Une calibration automatique et robuste des ponts de Wheatstone est encore nécessaire. 

Choix des centrales inertielles et position : 

La centrale inertielle utilisée dans le cadre de ce projet est la centrale BNO055 de Adafruit. Cette 

centrale a permis d’avoir d’atteindre l’objectif de ce mémoire. Cependant, il existe des centrales 

inertielles plus performantes permettant d’avoir des données plus stables. Aussi, l'IMU (1) placé 

sur la main n'est pas optimal à cause de sa taille. Il faut donc trouver des capteurs de plus petites 

tailles, ce qui réduirait leur aspect encombrant. En outre, l’étude de l’effet des mouvements 

parasites comme la marche sur le système pourrait faire l’objet de prochaines études. 

Nombre et positions des bracelets de jauges de déformations : 

Comme démontré dans l’article, Chapitre 4, l’orientation des jauges est un paramètre important 

pour la détection des intentions de mouvement. Deux axes orthogonaux ont été étudiés dans ce 

projet de recherche. Il pourrait être intéressant d’étudier les signaux provenant des jauges en 

configuration de rosettes. Aussi, une autre étude pourrait porter sur le nombre optimal de jauges à 

utiliser pour atteindre une précision de classification satisfaisante. 

Collecte des données : 

La collecte des données a été effectuée sur une population saine. Une étude ultérieure pourrait 

porter sur des personnes ayant des faiblesses musculaires avec un nombre similaire de mouvements 

(10) du membre supérieur. Cette étude permettra de valider le fonctionnement du système sur des 

personnes n’ayant pas de grandes activations musculaires.  

Entraînement du classificateur : 

Aussi, pour cette étude toutes les données de tous les participants ont été utilisées pour former les 

trois ensembles de données (entraînement, validation et test) afin de développer l’algorithme de 

classification. Il serait très intéressant de mettre en place des algorithmes de classification de 

mouvement spécifique à chaque personne, car [22] a  prouvé que la mise en place de classificateurs 

spécifiques à un sujet permettait d’augmenter la précision de classification. Aussi, Un entrainement 

successif en déplaçant le bracelet autour du bras pourrait permettre d’augmenter la robustesse de 
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l’algorithme de classification par rapport à la réinstallation du bracelet. En outre, l’entrainement de 

l’algorithme de détection d’intention de mouvement sera fait par un personnel qualifié. Ce dernier 

utilisera les métriques présentées dans la section 2.6 pour valider le bon fonctionnement de 

l’algorithme. L’algorithme développé devrait être aussi testé pour des contractions involontaires 

des muscles. 

CHAPITRE 8 CONCLUSION ET RECOMMENDATIONS 

L'objectif de ce travail de maîtrise était de développer un système de mesure portable capable 

d’identifier les intentions de mouvement en combinant des jauges de déformation et des centrales 

inertielles. Le système proposé est composé de 1. Deux bracelets utilisant chacun 6 jauges de 

déformation et 2. Deux centrales inertielles. Une carte d’acquisition adaptée à notre application a 

été développée pour conditionner les signaux provenant des jauges de déformations. Afin de 

garantir la solidité des connexions électriques et de bien positionner les jauges de déformations, 

une méthode utilisant des PCB flexibles a été proposée. Une bande kinésiologique a été utilisée 

afin de garantir un bon contact entre les jauges de déformation et la peau. La centrale inertielle 

utilisée est le BNO055 qui fait partie de la ligne de capteur intelligent développé par Bosh 

SensorTec. De plus le système a été conçu dans l’optique de pouvoir être embarqué.  

En ce qui concerne la reconnaissance d’intention de mouvements, les jauges de déformation ont 

permis d’avoir une mesure des contractions musculaires. Les centrales inertielles ont fourni de 

l’information sur la cinématique du mouvement. Le système de mesure a été préalablement testé 

sur un sujet effectuant une séquence de neuf mouvements et d’une position dite de repos. Une 

méthode basée sur la variation d’intensité des signaux provenant des jauges de déformation a 

permis d’identifier les neuf mouvements étudiés. Par la suite, des essais en laboratoire sur 7 sujets 

ont permis de construire une base donnée pour entraîner des algorithmes d’apprentissages profonds 

pour la détection d’intention de mouvements. Deux architectures différentes ont été testées à savoir 

un réseau de neurones récurrent et la combinaison entre ce réseau et un réseau de neurones 

convolutifs. La combinaison des deux réseaux s’est avérée meilleure avec une précision de 

classification de 95.1%. Une étude préliminaire sur la recherche d’hyperparamètres a été effectuée 

afin d’améliorer la performance de ce modèle. En outre, dans cette étude les informations 

cinématiques ont permis d’augmenter la précision de l’algorithme de classification de 5.8%. Ce 
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résultat vient confirmer le fait que l’information produite par les centrales inertielles est 

complémentaire à celle fournie par les jauges de déformations. 

Bien qu’il reste des améliorations à apporter à ce projet de recherche, les résultats obtenus 

démontrent du potentiel d'un tel système à devenir un système sensoriel portable intelligent pour 

détecter l'intention de mouvement de l’humain.  
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ANNEXE A  EXEMPLE DE CALCUL DE GRADIENT 

 

Figure.1 Perceptron multicouche 

Le perceptron à plusieurs couches de la Figure 1 est identique à celle de la figure 2.7. Ce modèle 

est utilisé pour l’exemple de calcul. Cette architecture comprend 3 neurones dans la couche 

d’entrée, 2 neurones dans la couche cachée et un neurone dans la couche de sortie. Les calculs qui 

suivent sont inspirés et adaptés de [62].  

On peut définir  𝑧 = 𝑊𝑇𝑥 + 𝑏 et 𝑎 = 𝑔(𝑧) où 𝑔(𝑧) est une fonction d’activation quelconque, 

section 2.3.2. 𝑊 représente la matrice des paramètres du réseau. 

Pour des questions de clarification  𝑊[𝑙] , avec les crochets représentent tout ce qui relié à la couche 

𝑙 du réseau de neurones. Ainsi, 𝑊[1] Représente la matrice de paramètres pour la couche 1 du 

réseau de neurones. De même, 𝑏[1] le vecteur de biais associé à la couche 1 du réseau de neurones.  

La passe avant peut être définie comme suit : 

La première couche va effectuer les transformations suivantes sur le vecteur d’entrée 𝑥 : 

𝑧[1] = 𝑊[1]𝑥[𝑖] + 𝑏[1] 𝑧[1], 𝑎[1]  ∈ ℝ3×1,  ( 8.1) 

𝑎[1] = 𝑔(𝑧[1]) 𝑊[1] ∈ ℝ3×𝑑, 𝑏[1] ∈ ℝ3×1 ( 8.2) 

La seconde couche va effectuer les transformations suivantes : 
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𝑧[2] = 𝑊[2]𝑎[1] + 𝑏[2] 𝑧[2], 𝑎[2]  ∈ ℝ2×1, ( 8.3) 

𝑎[2] = 𝑔(𝑧[2]) 𝑊[2] ∈ ℝ2×3, 𝑏[2] ∈ ℝ2×1 ( 8.4) 

La dernière couche qui est la couche de sortie va effectuer les transformations suivantes : 

𝑧[3] = 𝑊[3]𝑎[2] + 𝑏[3] 𝑧[3], 𝑎[3]  ∈ ℝ1×1 ( 8.5) 

𝑦̂(𝑖) =  𝑎[3] = 𝑔(𝑧[3]) 𝑊[3] ∈ ℝ1×2, 𝑏[3] ∈ ℝ1×1 ( 8.6) 

La prochaine étape de l’entraînement du réseau de neurones consiste à mettre à jour les paramètres 

en calculant la fonction coût. Pour cet exemple nous allons utiliser la fonction de coût 

logarithmique : 

ℒ(𝑦̂, 𝑦) =  −[𝑦𝑙𝑜𝑔(𝑦̂) + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦̂)] ( 8.7) 

La fonction de coût ℒ(𝑦̂, 𝑦) Que nous allons noter ℒ produit une seule valeur scalaire. Le calcul de 

cette valeur permettra de mettre à jour tous les paramètres dans chacune des couches 𝑙 du réseau 

de neurones selon les équations suivantes :  

𝑊[𝑙] = 𝑊[𝑙] −  𝛼
𝜕ℒ

𝜕𝑊[𝑙] 
( 8.8) 

𝑏[𝑙] = 𝑏[𝑙] − 𝛼
𝜕ℒ

𝜕𝑏[𝑙] 
( 8.9) 

où 𝛼 représente le taux d’apprentissage. Une fois la coût calculée, les gradients peuvent être 

obtenus par rapport aux paramètres que sont 𝑊[1], 𝑊[2], 𝑊[3], 𝑏[1], 𝑏[2], 𝑏[3].  En utilisant les 

équations précédentes, cela vient à calculer : 

𝜕ℒ
𝜕𝑊[1] ; 

𝜕ℒ
𝜕𝑊[2] ; 

𝜕ℒ
𝜕𝑊[3] 

( 8.10) 
𝜕ℒ

𝜕𝑏[1] ; 
𝜕ℒ

𝜕𝑏[2] ; 
𝜕ℒ

𝜕𝑏[3] ; 
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La partie qui suit montre un exemple de gradient calculé par rapport aux paramètres 𝑊[2] pour 

l’algorithme de rétropropagation. 

𝜕ℒ
𝜕𝑊[2] =  

[
 
 
 
 

𝜕ℒ
𝜕𝑊11

[2]
𝜕ℒ

𝜕𝑊12
[2]

𝜕ℒ
𝜕𝑊13

[2]

𝜕ℒ
𝜕𝑊21

[2]
𝜕ℒ

𝜕𝑊22
[2]

𝜕ℒ
𝜕𝑊23

[2]]
 
 
 
 

 ( 8.11) 

Maintenant pour calculer, les termes de la matrice 𝜕ℒ
𝜕𝑊[2] nous utilisons les règles de calcul de la 

dérivation en chaîne : 

𝜕ℒ

𝜕𝑊𝑖𝑗
[2]  =

𝜕ℒ
𝜕𝑦̂  

𝜕ℒ

𝜕𝑊𝑖𝑗
[2] ( 8.12) 

=
𝜕ℒ

𝜕𝑎[3]  
𝜕𝑎[3]

𝜕𝑊𝑖𝑗
[2] ( 8.13) 

=
𝜕ℒ

𝜕𝑎[3]  
𝜕𝑎[3]

𝜕𝑧[3]
𝜕𝑧[3]

𝜕𝑊𝑖𝑗
[2] ( 8.14) 

=
𝜕ℒ

𝜕𝑎[3]  
𝜕𝑎[3]

𝜕𝑧[3]
𝜕𝑧[3]

𝜕𝑊𝑖𝑗
[2] ( 8.15) 

=
𝜕ℒ

𝜕𝑎[3]  
𝜕𝑎[3]

𝜕𝑧[3]  
𝜕𝑧[3]

𝜕𝑎[2]  
𝜕𝑎[2]

𝜕𝑧[2]  
𝜕𝑧[2]

𝜕𝑊𝑖𝑗
[2] ( 8.16) 

On remarque que :  

𝜕ℒ
𝜕𝑎[3]  

𝜕𝑎[3]

𝜕𝑧[3] =
𝜕ℒ

𝜕𝑧[3] 
( 8.17) 

𝜕𝑧[3]

𝜕𝑎[2] =  𝑊3 
( 8.18) 

𝜕𝑎[2]

𝜕𝑧[2] = 𝑑𝑖𝑎𝑔(𝑔′(𝑧2)) 
( 8.19) 



129 

 

𝜕𝑧[2]

𝜕𝑊𝑖𝑗
[2] =  𝑎𝑗

[1]𝒆𝑖 
( 8.20) 

et 𝜕ℒ
𝜕𝑧[3] peut être calculée selon la procédure suivante : 

𝜕ℒ
𝜕𝑧[3]    =

𝜕
𝜕𝑧[3]  [−𝑦𝑙𝑜𝑔(𝑦̂) − (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦̂)] ( 8.21) 

= 
𝜕

𝜕𝑧[3]  [−𝑦𝑙𝑜𝑔𝜎(𝑧[3]) − (1 − 𝑦)𝑙𝑜𝑔 (1 − 𝜎(𝑧[3]))] ( 8.22) 

= −𝑦
1

𝜎(𝑧[3])
𝜎(𝑧[3]) (1 − 𝜎(𝑧[3]))

− (1 − 𝑦)
1

(1 − 𝜎(𝑧[3]))
(−1)𝜎(𝑧[3]) (1 − 𝜎(𝑧[3])) 

( 8.23) 

= −𝑦 (1 − 𝜎(𝑧[3])) + (1 − 𝑦)𝜎(𝑧[3]) ( 8.24) 

=  𝜎(𝑧[3]) − 𝑦 ( 8.25) 

𝜕ℒ
𝜕𝑧[3]   =  𝑎[3] − 𝑦 ( 8.26) 

Ainsi, le résultat suivant est obtenu : 

𝜕ℒ

𝜕𝑊𝑖𝑗
[2] = (𝑎[3] − 𝑦)𝑊[3] ∘ 𝑔′(𝑧[2]) 𝑎𝑗

[1]𝒆𝑖 
( 8.27) 

𝜕ℒ

𝜕𝑊𝑖𝑗
[2] = (𝑎[3] − 𝑦)𝑊[3] ∘ 𝑔′(𝑧[2]) 𝑎𝑗

[1] 
( 8.28) 

𝜕ℒ

𝜕𝑊𝑖𝑗
[2] =  [(𝑎[3] − 𝑦)𝑊[3] ∘ 𝑔′(𝑧[2]) ]𝑎𝑗

[1]𝑇 
( 8.29) 

avec ∘ qui représente le produit par élément ou le produit Hadamard. 
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ANNEXE B  COURBES D’APPRENTISSAGE DES HYPERPARAMETRES 

On remarque que pour un taux d’apprentissage de 1e-01 le modèle n’a pas convergé, Tableau 1. 

La courbe de la précision de classification est constante pour l’ensemble de validation. Lorsque le 

taux d’apprentissage a diminué à 1e-02 on a commencé à voir une convergence du modèle. Le taux 

de 1e-03 a permis d’avoir la meilleure courbe d’apprentissage. Lorsque le taux d’apprentissage à 

continuer à diminuer, la précision de classification obtenu à la fin de l’entrainement a été basse. Le 

taux d’apprentissage affecte alors la vitesse à laquelle le modèle apprend à identifier les classes de 

mouvement. 

Pour le nombre de filtres, Tableau 2, on remarque qu’une augmentation du nombre de filtres de 9 

à 32 a entrainé une augmentation de la précision de classification de 91.4% à 95.6%. Ce qui est 

normal car les filtres ont pour but d’extraire l’information pertinente des signaux. Cependant, on 

remarque qu’à partir de 32 filtres la précision de classification a diminué lorsqu’on a augmenté le 

nombre de filtres. En effet, un nombre de filtres trop élevé (nombre de caractéristiques) peut 

introduire des caractéristiques qui portent à confusion l’algorithme de classification.  

L’augmentation du nombre de neurones dans les couches LSTM, Tableau 3, a entrainé une 

augmentation de la précision de classification. Cependant, cette augmentation (0.75%) est minime 

comparé au nombre de paramètres à mettre à jour due à l’augmentation de 32 neurones à 128 

neurones. En effet, il faut compter 199,104 paramètres supplémentaires. Il est préférable de garder 

un nombre de neurones bas permettant d’avoir un bon résultat de classification avec le minimum 

de paramètres à entrainer. 

En entrainant le modèle sans terme de régularisation, Tableau 4, on a obtenu une précision de 

classification de 94.6%. Le terme de régularisation de 0.002 a obtenu le meilleur résultat de 

classification. En augmentant ce terme les résultats de classification ont diminué. Mais il est quand 

même intéressant de noter la superposition des courbes de l’ensemble d’entrainement et de 

validation, ce qui démontre la capacité de ce terme à maintenir une faible variance  

La taille du lot a également affecté la vitesse de convergence du réseau. Le réseau a convergé plus 

rapidement avec une petite taille de lot, Tableau 5. En effet, des lots plus petits permettent de mette 

à jour plus de fois les paramètres du réseau comparé à un lot plus important. Cependant, un lot trop 

petit ne permet pas au modèle de voir suffisant d’exemples avant de pouvoir mettre à jour les 

paramètres d’apprentissage. 
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Tableau 1 Taux d’apprentissage 

 
Figure 1.1 Taux d'apprentissage de 1e-01 

 
Figure 1.2 Taux d'apprentissage de 1e-02 

 
Figure 1.3 Taux d'apprentissage de 1e-03 

 
Figure 1.4 Taux d'apprentissage de 1e-04 

 
Figure 1.5 Taux d'apprentissage de 1e-05 
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Tableau 2 Nombre de filtres 

 
Figure 2.1 Couche CNN avec 9 filtres 

 
Figure 2.2 Couche CNN avec 18 filtres 

 
Figure 2.3 Couche CNN avec 32 filtres 

 
Figure 2.4 Couche CNN avec 64 filtres 

 
Figure 2.5 Couche CNN avec 128 filtres 
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Tableau 3 Nombre de neurones 

 
Figure 3.1 Couche LSTM avec 9 neurones 

 
Figure 3.2 Couche LSTM avec 18 neurones 

 
Figure 3.3 Couche LSTM avec 32 neurones 

 
Figure 3.4 Couche LSTM avec 64 neurones 

 
Figure 3.5 Couche LSTM avec 128 neurones 
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Tableau 4 Terme de régularisation 

 
Figure 4.1 Terme de régularisation de 0.01 

 
Figure 4.2 Terme de régularisation de 0.001 

 
Figure 4.3 Terme de régularisation de 0.002 

 
Figure 4.4 Terme de régularisation de 0.01 

 
Figure 4.5 Terme de régularisation de 0.02 
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Tableau 5 Nombre d’échantillons par lot 

 
Figure 5.1 Batch size de 25 

 
Figure 5.2 Batch size de 50 

 
Figure 5.3 Batch size de 100 

 
Figure 5.4 Batch size de 200 

 
Figure 5.5 Batch size de 300 
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