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RESUME

Les études récentes ont démontré que les signaux provenant des capteurs d’électromyographie de
surface pouvaient €tre utilisés pour identifier les intentions de mouvements. Ces capteurs sont
souvent combinés a d’autres types de capteurs afin d’augmenter la dimensionnalité des données.
La combinaison entre les capteurs d'électromyographie de surface et les centrales inertielles est la
méthode de détection multimodale la plus couramment utilisée. De nos jours, cette combinaison
est utilisée pour identifier l'intention de mouvement chez I'Homme, par ex. pour contrdler leur
prothése ou exosquelette. Cependant, les capteurs d’électromyographie présentent différents
inconvénients, par exemple ils nécessitent généralement deux électrodes placées sur deux sites de
la peau, ce qui les rend encombrants. La fréquence d’acquisition des signaux électromyographiques
est généralement de 1000Hz ce qui réduit le nombre de capteurs qui peuvent étre utilisés
simultanément. Les dispositifs embarqués utilisent généralement que 2 ou 3 de ces capteurs en
raison des requis ¢€levés en mémoire et en puissance de calcul nécessaires pour traiter ces
informations. Aussi, ces capteurs sont également trés sensibles aux bruits. Cette nature variable des
signaux d'¢lectromyographie a motivé la recherche de solutions pouvant utiliser plusieurs capteurs
fonctionnant a des fréquences d’acquisitions plus basses pour les applications quotidiennes.
L'objectif de ce mémoire de maitrise est de développer un systéme portable permettant d’identifier
les intentions de mouvement en combinant des jauges de déformation et des centrales inertielles.
Le systéme développé est composé de deux bracelets utilisant chacun six jauges de déformation
connectées a un PCB flexible et deux centrales inertielles. Physiologiquement, les jauges de
déformation mesurent la déformation de la peau due aux contractions musculaires tandis que les
centrales inertielles fournissent des données complémentaires sur la cinématique du mouvement.
Les données ont été collectées sur sept personnes saines. Un algorithme de classification utilisant
une combinaison entre un réseau de neurones récurrents et un réseau de neurones convolutif a
permis d’identifier neuf mouvements du membre supérieur ainsi qu’un mouvement dit de repos.
L’algorithme de classification a atteint une précision de classification de 89.3% en utilisant
uniquement les signaux des jauges de déformations. L'ajout des informations cinématiques a
produit une augmentation de la précision de classification de 5,8 % pour atteindre 95.1%. Ces

résultats démontrent le grand potentiel d'un tel systéme a identifier les intentions de mouvements.
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ABSTRACT

Recent studies have shown that signals obtained from electromyography sensors can be used to
identify human movement intentions. These sensors are often paired with other types of sensors to
increase the dimensionality of the data. The combination of surface electromyography sensors and
inertial units is the most commonly used multimodal sensor technique. Nowadays, this
combination is used to identify the intention of movement in humans, e.g. to control their prosthesis
or exoskeleton. However, electromyography sensors have various drawbacks. These sensors
generally require two electrodes placed at two sites on the skin, which makes them bulky.
Additionally, the frequency of acquisition of electromyography signals is generally about 1000Hz
which reduces the number of sensors that can be used simultaneously. Indeed, on-board devices
generally use 2 or 3 of these sensors because of the high memory and computing power required
to process the information. These sensors are also very sensitive to noise. The variable nature of
electromyography signals has motivated the search for alternatives that can utilize multiple sensors
operating at lower frequencies for everyday applications. The objective of this study is to develop
a newly portable system to identify movement intentions by combining strain gauges and inertial
units. The system is composed of 1. two bracelets each using six strain gauges, connected to a
flexible PCB and 2. two inertial units. Physiologically, strain gauges measure the deformation of
the skin due to muscle contractions while inertial units provide additional data on the kinematics
of movement. Data was collected from seven healthy subjects. A classification algorithm based on
a combination of a recurrent neural network and a convolutional neural network has identified nine
upper limb movements as well as one rest movement. The classification algorithm achieved a
classification accuracy of 89.31% using only the signals from the strain gauges. By adding the
kinematic information yielded an increase in classification accuracy of 5.74% to obtain a final
accuracy of 95.05%. These results show the great potential of using such a system to accurately

identify movement intentions.
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CHAPITRE1 INTRODUCTION

L’analyse des mouvements chez I’humain est un sujet de recherche majeur avec des applications
en biorobotique, diagnostic clinique, ingénierie de la réadaptation et en interfaces Homme-
Machine. Dans le domaine de la réadaptation, une des applications de 1’analyse de mouvement
consiste a détecter les intentions de mouvements de 1’utilisateur afin de controler des exosquelettes,
pour des personnes ayant des faiblesses musculaires, ou des prothéses myoélectriques, pour des
personnes ayant subi une amputation. Pour effectuer ce controle, les contractions musculaires
générées par ’'usager sont utilisées afin d’actionner le systeme. Les capteurs d’¢électromyographie
sont les capteurs les plus utilisés pour détecter ces contractions musculaires. Cependant, hormis les
inconvénients reliés aux capteurs d’électromyographie, les dispositifs commerciaux utilisent un
nombre limité de ces capteurs (généralement deux) ce qui limite le nombre de degrés de liberté
(DDL) des systémes actionnés. En effet, pour effectuer des taches de la vie quotidienne comme
I’ouverture d’une porte, plusieurs DDL sont sollicités pour effectuer la flexion et 1’extension du
coude, la préhension de la main ainsi que la pronation et supination de 1’avant-bras. Il faut un
nombre élevé de capteurs pour recouvrir ces groupements musculaires afin d’avoir un nombre

adéquat de DDL.

Différents types recherches se sont penchés sur le développement de nouveaux capteurs pouvant
remplacer les capteurs d’électromyographies et sur de nouvelles stratégies de contrdles.
Contrairement, aux capteurs d’électromyographies qui ont une structure rigide, les technologies
émergentes se concentrent sur 1’utilisation de capteurs flexibles qui sont capables d’atteindre des
déformations du méme ordre de grandeur que la peau humaine. Ces capteurs sont souvent combinés
a d’autres types de capteurs, chacun mesurant des modalités différentes, et permettant de

reconstituer le mouvement avec plusieurs dimensionnalités.

Les stratégies émergentes de contrdles reposent quant a elles sur les algorithmes de reconnaissance
de formes. Ces algorithmes ont I’avantage de pouvoir traiter un important flux de données pour les
classifier. Ainsi, cette stratégie permettrait d’avoir un contrdle plus intuitif des exosquelettes ou

des prothéses myoélectriques avec un nombre de DDL plus élevé.

Dans ce contexte, 1’objectif de ce mémoire est de développer un capteur portable identifiant les

intentions de mouvement en combinant des jauges de déformation et des centrales inertielles.



Dans cette these, le chapitre 2 introduit les types de signaux qui seront utilisés. Par la suite, les
concepts de bases permettant la compréhension des algorithmes d’apprentissage profond seront
abordés. Ces concepts permettront de comprendre des architectures de bases comme celles des
perceptrons multicouches (MLP) et des architectures plus complexes comme les réseaux de
neurones convolutifs (CNN) et réseaux de neurones récurrents (RNN). Le chapitre 3 présente la
justification du projet. Le chapitre 4 présente la méthodologie complémentaire a celle de 1’article.
Le chapitre 5 présente 1’article qui a ét€ soumis pour publication. Le chapitre 6 présente les résultats
complémentaires. Un chapitre de discussion sera présenté a la suite des résultats. Dans le dernier
chapitre, une bréve conclusion est présentée avec des réflexions sur le travail réalisé tout au long

du mémoire ainsi que des commentaires sur les perspectives d’améliorations.



CHAPITRE2 REVUE DE LITTERATURE

Une approche émergente pour contréler des exosquelettes et des protheses myoélectriques
consiste a utiliser les mesures d’électrodes d’électromyographie de surface (SEMG) [1]. Ces
mesures combinées a des algorithmes de reconnaissance de formes permettent d’identifier
I’intention de mouvement de 1’utilisateur et ainsi controler un actionneur [2]. Cette méthode a le
potentiel de permettre aux personnes souffrant de diverses déficiences physiques et/ou troubles
neuromusculaires de récupérer une partie de leurs fonctions motrices et ainsi améliorer leur qualité

de vie [3].

2.1 Les stratégies de controle

Malgré les avancées technologiques dans le domaine des exosquelettes et des prothéses
myoélectriques, les stratégies de leur controle quant a elles, n’ont pas évolué significativement. En
effet, la majorité des prothéses commerciales actuelles peuvent répliquer qu’un nombre limité des
mouvements du membre supérieur (nombre de DDL limité) [4]. La stratégie de contrdle de ces
prothéses repose sur un nombre peu élevé d’électrodes (1-3), et sur un contrdle séquentiel ou un
déclencheur de mouvement spécifique, souvent par 1’utilisation d’un bouton externe, ou d’une
application mobile [5], [6]. Pour le controle séquentiel, un signal spécifique, par exemple une
activation d’électrodes placées sur une paire de muscles antagonistes, permet de choisir un
mouvement parmi un ensemble de mouvements prédéfinis [5], [6]. Pour le déclencheur de
mouvement, une séquence d’activation particuliere des ¢€lectrodes ou I’atteinte d’un seuil bien
défini par le signal SEMG permettent d’actionner un mouvement spécifique [5], [6]. Ces méthodes
de contrdle ne sont pas intuitives et sont encore loin d’€tre naturelles et nécessitent un certain

niveau de compétence ou de longues heures de formation de 1’utilisateur [5], [6].

Durant ces derni¢res années, les stratégies de controle basées sur la reconnaissance de formes
utilisant des algorithmes d’intelligence artificielle ont prouvé étre mieux adaptées aux besoins des
utilisateurs. La reconnaissance de formes permet d’identifier les caractéristiques spécifiques a
chaque mouvement, et ainsi de controler un nombre plus élevé de mouvements (plus de DDL)
comparés aux méthodes classiques de contrdle [7]. Cette stratégie pourrait permettre d’obtenir un

controle plus intuitif de la prothése ou de ’exosquelette ce qui représenterait un apport majeur.



Pour ce faire, les signaux provenant de différentes électrodes sont utilisés pour entrainer un
algorithme de reconnaissance de formes. Il existe différents algorithmes de classifications de
mouvements, mais leur but principal reste le méme, classifier correctement un mouvement en
fonction des signaux regus. Avec cette stratégie, I’utilisateur peut simplement penser a exécuter un
mouvement de fagcon naturel (ex. : pronation de 1’avant-bras) et en contractant le membre les
signaux peuvent étre reconnus par I’algorithme de reconnaissance de formes et ce mouvement sera

exécuté par la prothése ou supporté par I’exosquelette [8].

Les étapes majeures de la stratégie de controle utilisant un algorithme de reconnaissance de formes

sont illustrées a la Figure 2.1. Elle repose sur :

e L’acquisition des signaux : utilisation des capteurs pour collecter les signaux d’activations

musculaires.

o L’extraction de caractéristiques : permettant de retenir les informations les plus

importantes du signal.
e La classification : prédiction du mouvement du membre

e La production du signal de contréole : permettant d’activer I’actionneur pour effectuer le

mouvement désiré [9].

. A Extraction des Reconnaissance e Signaux de
Signaux bruts —= Prétraitement | s Classification —= .
caractéristiques de formes controle
.

.y

Figure 2.1 Etapes du contrdle basé sur la reconnaissance de formes. Le processus commence par
les signaux bruts et se termine par une sortie de contrdle. Figure adaptée de [10]

Les étapes majeures de la stratégie de controle que sont I’extraction de caractéristiques, la
reconnaissance de formes et la classification des mouvements sont discutées dans les sections

suivantes.

2.1.1 Extraction et sélection de caractéristiques

L’extraction des caractéristiques consiste a appliquer des transformations sur des données brutes
afin d’obtenir un ensemble de caractéristiques pertinentes utilisable par les algorithmes
d’apprentissage machine [11]. Ces caractéristiques doivent étre en mesure de capter 1’information

principale du signal permettant d’améliorer la performance du classificateur.



Dans le processus de sélection des caractéristiques, plusieurs techniques comme 1’analyse des
composants principaux (PCA), I’analyse discriminante linéaire (LDA), I’analyse des composantes
indépendantes (PCI), les valeurs statistiques et la mesure d’entropie peuvent étre employées [10],
[12], [13]. En plus, les caractéristiques peuvent étre étudi¢es dans le domaine temporel, dans le
domaine fréquentiel ou une combinaison des deux (domaine temps-fréquence) [14]. Les
caractéristiques dans le domaine temporel incluent la moyenne, la médiane, la variance, la moyenne
quadratique (RMS), I’écart type et ’intervalle interquartile [14]. Les caractéristiques du domaine
fréquentiel, qui représentent principalement la structure périodique du signal, sont la transformée
de Fourier, I’entropie spectrale, 1’énergie spectrale et les coefficients des filtres autorégressifs [14].
Les caractéristiques du domaine temps-fréquence sont utilisées pour étudier a la fois les
caractéristiques temporelles et fréquentielles de signaux complexes et utilisent en général des
techniques d’ondelettes, telles que les coefficients d’ondelettes ou I’énergie des coefficients

d’ondelettes [15].

Apres avoir déterminé un ensemble de caractéristiques provenant du signal d’origine, les
algorithmes d’extractions de caractéristiques peuvent étre combinés a des algorithmes de sélection
de caractéristiques. Ces derniers ont pour but de réduire la dimensionnalit¢ des données en

identifiant les caractéristiques les plus importantes pour le classificateur [16].

En plus de ces caractéristiques individuelles, des travaux de recherche ont ét¢ menés sur leurs
combinaisons pour développer de nouveaux ensembles de caractéristiques. La combinaison des
caractéristiques temporelles utilisées par Hudgins [7] est la plus utilisée et comprend les
caractéristiques suivantes : MAV (valeur absolue moyenne), WL (longueur d’onde), ZC (passage
a z¢éro), and SSC (changement de signe de la pente). Plus récemment, Guo Shuxiang et al. [17] ont
propos¢ huit combinaisons de quatre méthodes d’extraction de caractéristiques RMS (racine
moyenne quadratique), DFA (analyse de fluctuation sans tendance), WP (pics de poids) et MM
(modéle musculaire). De nombreuses ¢tudes ont montré que le succes des algorithmes de
classification dépend fortement de la qualité I’extraction et de la sélection des caractéristiques [17].
Il est donc essentiel de déterminer les caractéristiques qui ont le plus d’impacts sur I’algorithme de

classification.



2.1.2 Reconnaissance de formes

Apreés avoir extrait et sélectionné les caractéristiques, des algorithmes de reconnaissance de formes
sont utilisés afin de corréler les caractéristiques extraites dans des classes de mouvement
spécifiques. Les algorithmes de reconnaissance de formes les plus utilisés dans les récents travaux
sont I’analyse discriminante linéaire (LDA) [12], les machines a vecteurs de support (SVM) [18],

et les modéles de Markov [19].

Les classificateurs LDA ont longtemps été considérés comme la meilleure approche pour la
classification des signaux myoélectriques. Le principal avantage de LDA est sa simplicité de mise
en ceuvre, surtout pour les systémes embarqués, et sa facilité d’entrainement. Cependant, le LDA
présente plusieurs inconvénients. En effet, un classificateur LDA ne peut produire qu’une seule
sortie, ainsi pour les applications ou plus d’un mouvement est exécuté, il est nécessaire d’avoir un

classificateur pour chacun des mouvements [20].

Hormis le LDA, de nombreux travaux dans la littérature ont mis en évidence la pertinence des
réseaux de neurones (NN) a classifier des ensembles de données. L’avantage des réseaux de
neurones réside dans leur capacité a représenter a la fois des relations linéaires et non linéaires ; et
apprendre ces relations directement a partir des données modélisées [5]. Englehart ez al. [21] ont
développé un NN a perceptron multicouche (MLP) pour classifier des caractéristiques du domaine
temporel des signaux myoélectriques. L’algorithme développé a permis de classifier quatre types
de mouvements du membre supérieur, avec un taux d’erreur d’environ 10%. Les travaux effectués
par I’équipe des Prof. Raison et Prof. Achiche (Gaudet et al. [22]) ont proposé un MLP pour
classifier 8§ mouvements du membre supérieur de cinq amputés transhuméraux et ont obtenu une

précision de classification compris entre 60.9% et 93.0%.

Atzori et al. [23] ont proposé un réseau de neurones convolutif (CNN) pour classifier les
mouvements du jeu de données Ninapro 1 [24] et ont atteint une précision de classification de 66,6
+ 6,4 % sur plus de 50 mouvements de la main. La motivation derricre I’utilisation des CNN réside
dans leur puissante fonction d’extraction de caractéristiques [25]. En effet, ils sont capables
d’apprendre des caractéristiques pertinentes directement a partir des données. Cependant, les CNN
ne prennent pas en compte les dépendances temporelles entre les données. Les signaux
physiologiques sont séquentiels de nature, et il est important de capter cette information. Pour cela,

les réseaux de neurones récurrents (RNN) sont utilisés. Les RNN permettent de prendre en



considération la dépendance temporelle entre les données en changeant dynamiquement leur état
interne [25]. IIs sont utilisés pour la prédiction et classification de séries chronologiques [25].
Récemment, les unités de mémoire a long court terme (LSTM) et les unités récurrentes fermées
(GRU) sont devenues les deux architectures RNN les plus utilisées sur les données chronologiques.
Les travaux effectués par 1’équipe des Prof. Raison et Prof. Achiche (Barron et al. [26]) ont proposé
un RNN pour identifier 6 gestes du membre supérieur de cinq amputés transhuméraux et ont obtenu
une précision de classification de 79.7%. Wu et al., [25] ont combiné un CNN et un LSTM pour
proposer le LCNN. Cette architecture tire I’avantage des LSTM qui sont utilisés pour extraire des
informations temporelles dans les signaux et des CNN qui sont utilisés pour extraire des
caractéristiques et classifier les signaux. La précision de classification moyenne du LCNN a atteint

98,1% pour cinq mouvements de la main.

Les réseaux de neurones profonds tels que les CNN et LSTM ont permis d’enregistrer des avancées
majeures dans le domaine de D’intelligence artificielle. Il est donc important d’investiguer la

capacité de ces méthodes pour la reconnaissance d’intention de mouvement.

2.2 Les capteurs

SEMG est une technique qui utilise des €lectrodes placées sur la peau a un endroit spécifique pour
enregistrer les contractions musculaires [15]. La performance des stratégies de contrdle basées sur
des algorithmes de reconnaissance de formes repose grandement sur la capacité des algorithmes a
identifier les informations les plus importantes provenant des signaux sSEMG qui sont eux-mémes
caractérisés par une grande variabilité et des propriétés non stationnaires [27]. La nature variable
des signaux sEMG, rend trés difficile la mise en place d’algorithmes robustes permettant
d’identifier de maniére efficace les mouvements du membre supérieur et de les utiliser pour

controler des exosquelettes ou des protheses [26].

Dans les sections suivantes, d’autres types de capteurs pouvant remplacer les capteurs SEMG sont
présentés.

2.2.1 Combinaison de capteurs

La combinaison entre les capteurs SEMG et les IMU est la combinaison de capteurs la plus

couramment utilisée sur le membre supérieur [28]. Ces capteurs fournissent des informations qui



sont fréquemment utilisées pour identifier I’intention de mouvement chez I’Homme. Les

applications les plus répandues sont la reconnaissance des gestes de la main et du doigt [29],[30]

pour classer les mouvements fantdbmes des membres supérieurs chez les amputés transhuméraux a

partir du moignon afin de contréler leur prothése [22],[31] ou exosquelette [32].

La combinaison entre SEMG et IMU peut se justifier physiologiquement, car :

1.

Les sEMG permettent de détecter I’intention de mouvement en mesurant 1’activité
musculaire. C’est pourquoi le SEMG reste le capteur principal pour commander les

prothéses myoélectriques.

Les IMUs fournissent des informations cinématiques supplémentaires sur le mouvement,

c’est-a-dire les configurations d’articulation, les vitesses et les accélérations.

Les IMUs pallient deux limitations des sSEMG :

1.

Les sEMG souffrent généralement de 1’effet de la position des membres, ou les signaux
SEMG pour le méme mouvement sont différents dans différentes positions des membres

[33], [34]. L’IMU peut donc fournir cette distinction.

Les IMU sont particulierement efficaces pour capturer des mouvements plus importants,
tandis que les données SEMG ont permis de mieux distinguer les différentes formes de

mains et les mouvements des doigts [29].

2.2.2 Inconvénients des capteurs EMGs

Bien que les signaux sSEMG sont les plus utilisés pour la détection des mouvements, il reste qu’ils

présentent plusieurs inconvénients [35], [36].

1.

2.

Les signaux sEMG deviennent souvent instables en raison de la transpiration, des
déplacements des €lectrodes, des artefacts de mouvement et du bruit causé par la présence

d’équipements ¢€lectroniques. [15],[36].

De plus, une diaphonie peut se produire en raison du nombre €élevé de muscles cote a cote

et la fatigue musculaire peut affecter de maniere cruciale la qualité des signaux [15],[36].

La quantité de données provenant de SEMG (acquisition 1000 Hz) nécessite une puissance

de calcul élevée pour les traiter en temps réel dans un dispositif portable [37].



2.2.3 La recherche d’alternatives

L’intérét grandissant pour les technologies intelligentes portables nécessite le développement de
nouveaux capteurs a faible coft, avec une sensibilité ¢levée et une faible limite de détection[38].
Les récentes recherches se sont penchées sur le développement de capteurs intégrés a des substrats
qui ont la capacité de fléchir, de plier ou de s’étirer. Ces capteurs sont faits de matériaux
biocompatibles qui peuvent atteindre des contraintes du méme ordre de grandeur que les
¢lastomeres et la peau humaine, ce qui rend ces capteurs compatibles avec les technologies

portables émergentes [39].
2.2.3.1 Les capteurs flexibles
Ces capteurs sont généralement faits de deux composants :
e  Un matériau conducteur : L’¢lément de détection et/ou de transmission de signal

o Un substrat : L’¢élément flexible utilisé pour encapsuler le matériau conducteur

Le Tableaux 2.1 et le Tableau 2.2 font le résumé des substrats et conducteurs utilisés pour la

fabrication de ces capteurs.

Tableau 2.1 les différents substrats utilisés dans la fabrication des capteurs

Substrats Principe de fonctionnement

Elastoméres[40],[41] | Utiliser des polyméres hautement flexibles, capables de se conformer a

la peau qui se peut se déformer jusqu’a 30% de sa longueur initiale.

Tissus [42],[43] Utiliser des fibres conductrices tissées de la méme maniere que les fibres

conventionnelles qui agissent comme des éléments sensoriels.

Les ¢élastomeres sont les substrats les plus utilisés pour la fabrication des capteurs flexibles.

Certains sont capables de se déformer jusqu’a 700% sans perdre leurs propriétés mécaniques.
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Tableau 2.2 les différents types de conducteurs utilisés dans la fabrication des capteurs

Conducteurs

Principe de fonctionnement

Films métalliques minces

[44],[45]

Rendre les matériaux conducteurs plus fins afin qu’ils deviennent

flexibles.

Métal liquide [46][47]

Utiliser des métaux liquides (part ex eGaln, Galistan) dans
I’¢lectronique  flexible comme alternatives aux métaux

conventionnels.

Liquides et solutions

ioniques [48], [49]

Utiliser des solutions ioniques (par ex NaCl, KCI) comme des

matériaux conducteurs.

Encres conductrices

[40],[50][51]

Utiliser un solvant qui contient une suspension de particules
conductrices, telles que les nanoparticules métalliques, les
composés organométalliques, les nanotubes de carbone et

Graphene comme conducteurs.

Des exemples de capteurs flexibles sont présentés sur la Figure 2.2. Hirsch et al [46], a proposé un

capteur utilisant un film métallique mince Figure 2.2 (a). Ce capteur souple a été développé pour

enregistrer 1'amplitude des mouvements du doigt humain. Park et al [52] a proposé une peau

artificielle utilisant comme substrat du silicone et comme conducteur un métal liquide (eGaln)

Figure 2.2 (b). Le principe de fonctionnement de cette peau artificielle repose sur le fait que la

résistance du capteur change lorsqu’il subit une déformation. Gao et al [53], a proposé un capteur

super-étirable a base de métal liquide Figure 2.2 (c¢). Ce capteur a une structure similaire a celle

d’une jauge de déformation encapsulée dans un élastomeére.

L’utilisation de ces capteurs présente différents défis que les chercheurs s’efforcent de surmonter:

e La généralisation des techniques de fabrication hautement spécialisées pour les matériaux

souples

e L’intégration de I’¢électronique miniaturisée.
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La résolution de ces défis améliorera considérablement 1’utilité¢ de ces méthodes pour fabriquer des

capteurs qui pourront étre utilisés en dehors d’un environnement de laboratoire.

Figure 2.2 Exemples de capteurs souples. (a) Films métalliques minces biphasiques (solide-
liquide) intrinsequement extensibles. Tiré de (Hirsch et al, 2016). (b) Peau artificielle douce
utilisant des microcanaux intégrés et des conducteurs liquides. Tiré de (Park et a/, 2012). (¢)
Conception structurelle a microcanaux pour un capteur super-étirable a base de métal liquide a
température ambiante. Tiré de (Gao et a/,2019).

2.2.3.2 Un concept préliminaire utilisant les jauges de déformation

Les travaux effectués par I’équipe des Prof. Raison et Prof. Achiche (Zizoua et al. [41]) ont présenté
une preuve de concept d’un bracelet utilisant des jauges de déformation unidirectionnelles pour
I’identification de quatre mouvements du membre supérieur chez les amputés traumatiques :

flexion/extension du coude et pronation/supination de 1’avant-bras.

Cependant ce systéme ne permet pas d’identifier des mouvements tridimensionnels, en raison de

ces principales limitations :

1. Déformations uniaxiales : les jauges ont ét¢ placées uniquement dans le sens longitudinal

du biceps brachial ce qui ne permet pas d’enregistrer les déformations multiaxes de la peau.
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2. Fragilité : les jauges de déformation étaient reliées par deux fils fins. Cela a permis une
premiére preuve de concept, mais ces fils se brisent, ou se dessoudent aprés quelques

utilisations.

3. Non-portabilité : le systéme n’est ni compact ni portable ce qui limite son application dans

la vie de tous les jours.

4. Mangque de contact conforme a la peau pendant le mouvement : les jauges de déformation
étaient insérées dans un bracelet en silicone qui n’offrait pas de contact direct avec la peau

limitant ainsi la capacité du systéme a mesurer la déformation de la peau.

Dans la section suivante, le principe de fonctionnement de deux types de capteurs est présenté : les

jauges de déformation et les centrales inertielles.

2.2.4 Les capteurs a base de jauges de déformation

Cette section nous introduit aux notions de base permettant de comprendre le fonctionnement des
jauges de déformation. Il est inspiré du livre « Méthodes expérimentales et instrumentation en

mécanique » [54].

2.2.4.1 Principe de fonctionnement

La jauge de déformation, Figure 2.3, est un élément résistif. On la colle sur une piéce au point ou
on veut mesurer la déformation a travers un support d’isolation. Elle est constituée d’un fil fin
enroulé selon une direction définie qui constitue la grille. Elle a une résistance nominale qui change

proportionnellement a la déformation qu’elle subit.

Support
d'encapsulation

F A ,

4
N 4
a Grille
>

Pattes de sortie

/

Figure 2.3 Exemple d’une jauge de déformation a trame pelliculaire
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2.2.4.1.1 Sensibilité du matériau

La résistance des fils conducteurs change lorsqu’ils sont étirés. La relation qui relie la variation de
résistance d’un fil conducteur en fonction de sa déformation axiale est définie comme la sensibilité

Sa du matériau.

La valeur San’est pas constante pour beaucoup de matériaux. Cependant pour des alliages comme
le Constantan ou le Nichrome, la valeur Sa est constante pour une grande plage de déformation.

Aussi pour ces matériaux, Sa est moins sensible aux variations de température.

Le constantan est I’un des matériaux les plus utilisés pour la fabrication des jauges de déformations.
C’est alliage constitué de 45% de Nickel et 55% de cuivre. Ce matériau présente les caractéristiques

suivantes :
- Sensibilité (Sa~2.1) constante pour une tres grande plage de déformation
- Résistivité élevée (p = 50 X 107° Q.cm) ce qui permet de fabriquer de trés petites jauges

- Tres stable et relativement peut affecter par les changements de température.

_AR/R

A= ALJL (2.1)

AR /R : Variation relative de la résistance
AL/L : Variation relative de la longueur

S, : Sensibilité du matériau a la déformation

2.2.4.1.2 Facteur de jauge du fabricant (Sc)

A I’achat des jauges de déformation, le manufacturier procure la valeur de sensibilité du matériau
Sc. Contrairement a Sa qui est une valeur théorique, Sg est déterminé de fagon expérimentale. En
effet, S est déterminée pour un lot de jauge de déformations a la suite d’essais standardisés. La
jauge doit est étre soumise a des déformations variant de 0 & 1000um/m dans un champ de

contrainte uniaxiale uniforme.

Pour déterminer S d’un lot de jauges, le fabricant fait un échantillonnage des jauges d’un lot sur

lequel il effectue 1’essai standardisé. Les procédures d’essais standardisés se font selon :
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- Organisation internationale de Métrologie légale, recommandations no. 62

- American Society for Testing and Materials, ASTM Method E251.

2.2.4.1.3 Autocompensation de la température.

Lorsqu’une jauge est soumise a une variation de température en 1’absence de déformation

mécanique, 3 phénomenes peuvent se produire :
- Variation de la résistance de la jauge
- Dilatation de la structure sur laquelle la jauge est collée
- Dilatation de la grille de la jauge

Il existe différentes techniques pour pallier les effets indésirables de variation de température.
Cependant, cela sort du cadre de ce mémoire de maitrise. Les jauges a base de Constantan qui est
un matériau peu affecté par les changements de température seront utilisées dans le cadre de ce

projet.

2.2.4.2 Circuit de conditionnement : Pont de Wheatstone

Les jauges de déformation sont des capteurs passifs qui nécessitent un circuit de conditionnement.
La majorité des instrumentations commerciales utilisent une version plus ou moins modifiée du
pont de Wheatstone, Figure 2.4. L’utilisation des jauges de déformation nécessite un circuit capable
de mesurer de petites variations de résistance €lectrique (environ 10%). Le pont de Wheatstone est

le circuit le mieux adapté pour ce genre d’applications.

V : Alimentations DC

R1, R2, R3, R4 : Résistances variables.

Em : Voltage de sortie a un instrument
v d’impédance Zm

Figure 2.4 Pont de Wheatstone
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Le fonctionnement du pont de Wheatstone est basé sur le principe suivant : lorsque Ri, R2, R3,
R4 sont identiques, la valeur Em est égale a zéro (pont en équilibre). Ainsi, en modifiant la valeur
d’une des résistances du pont on entraine une variation du voltage de sortie. Il existe plusieurs types
de ponts de Wheatstone, dans notre cas nous allons utiliser I’architecture du quart de pont présenté

a la Figure 2.5.

7\ Vv

N
Rﬁ\/ﬁu

Figure 2.5 Configuration quart de pont de Wheatstone

Dans cette architecture J1 représente la jauge de déformation. La jauge J1, et les résistances Rz, R3,
R4 ont les mémes valeurs nominales de résistance théorique. En appliquant une déformation a la
jauge J1, la résistance de la jauge change ce qui entraine un déséquilibre du pont entrainant une

variation de voltage mesurée AEm.

2.2.4.3 Equilibrage initial du pont de Wheatstone

Dans la configuration en quart de pont, Figure 2.6, la résistance R> a ¢été remplacée par un
potentiometre linéaire qui permettra de faire 1’équilibrage initial du pont de Wheatstone.
L’¢équilibrage consiste a ramener AEm a zéro (AEm = 0) lorsqu’il n’y a aucune déformation subite

par la jauge J1.
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Figure 2.6 Equilibrage du quart de pont de Wheatstone avec un potentiométre

En effet, malgré que les résistances J1, R2, R3, R4 ont les mémes valeurs nominales théoriques, elles
ne sont pas parfaitement identiques. Chaque résistance a sa valeur nominale qui varie généralement

de + 1% Il est donc rare que le pont soit équilibré sans avoir préalablement fait des réglages.

2.2.5 Les centrales inertielles

Les centrales inertielles sont généralement utilisées pour estimer 1’orientation d’un corps par
rapport a un référentiel bien défini. Elles sont constituées généralement d’unités de mesure qui
utilisent des gyroscopes, des accélérométres et des magnétometres pour mesurer des mouvements
linéaires et angulaires. L’accélérométre mesure les accélérations linéaires le long des 3 axes
cartésiens X, Y et Z. Le gyroscope mesure la vitesse angulaire le long des 3 axes cartésiens X, Y
et Z. Le magnétometre calcule la direction dans laquelle le capteur fait face par rapport au nord
magnétique. Les centrales inertielles qui disposent d’un accélérometre a 3 axes, d’un gyroscope a

3 axes et d’un magnétometre a 3 axes sont appelées des centrales inertielles a 9 DDL.

Cependant, chacune des unités de mesure des centrales inertielles a des problemes distincts.
L’accélérométre a tendance a étre bruyant. Le gyroscope accumule les erreurs au fil du temps
générant une dérive inévitable. Les mesures du magnétometre sont soumises a une distorsion ayant
deux sources : 1. Les distorsions dites « hard iron » créées par des objets qui produisent un champ
magnétique. 2. Les distorsions dites « soft iron » considérées comme des déviations ou des

modifications du champ magnétique existant [55].
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Plusieurs techniques de fusion de capteurs ont été développées pour générer une estimation de
I’orientation, cependant, cela sort du cadre de ce mémoire et seules les lectures brutes de
I’accélérométre et du gyroscope seront utilisées. Il y a eu plusieurs implémentations de la
reconnaissance d’intention de mouvements qui ont été complétées par 1’utilisation de données

provenant de mesures de centrales inertielles [56].

2.3 Les réseaux de neurones artificiels

Les réseaux de neurones artificiels sont des systémes informatiques composés d’éléments de
traitement adaptatif interconnectés communément appel€s neurones. Ces neurones utilisent un
réseau de fonctions mathématiques pour comprendre et traduire une entrée de données d’une forme
en une sortie souhaitée [57]. Le concept des réseaux de neurones artificiels a été inspiré par la
biologie humaine et de la maniére dont les neurones du cerveau humain fonctionnent ensemble
pour comprendre informations provenant des sens humains [57]. Comme présenter sur la Figure
2.7, un ensemble d’entrées du neurone artificiel (synapses) avec des poids différents (dendrites)
qui s’additionnent (corps cellulaire.) Apres la somme pondérée, le résultat passe par une fonction

d’activation, excitant ainsi le neurone (déclenchement un potentiel d’action a travers 1’axone).

Biais

Entrées Poids

Fonction

d’activation .
sortie

Wq

®_.
®_

Figure 2.7 Neurone artificiel avec les entrées (x1...Xn), les poids (wi...wn), le biais (b). La sortie y
du neurone est le résultat de la fonction d’activation appliquée a la somme pondérée de toutes
entrées et du biais. Figure adaptée de [58].

Le premier réseau de neurones artificiels a été présenté en 1943, par Warren McCulloch, un
neurophysiologiste, et Walter Pitts, un mathématicien [59]. Ces derniers ont écrit un article sur le
fonctionnement des neurones et ont modélisé un simple réseau de neurones avec des circuits

¢lectriques.
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En 1957, les travaux de Rosenblatt [60] ont abouti a un réseau a deux couches, le perceptron, qui
¢tait capable d’apprendre certaines classifications en ajustant les poids de connexion, mais
présentait également certaines limitations. En effet, le perceptron était encore un classificateur

linéaire qui pouvait apprendre que des classes linéairement séparables.

Il a fallu attendre les années 1980, ou 1’algorithme de rétropropagation [61] a été développé, ce qui

a permis d’entrainer des perceptrons a plusieurs couches Figure 2.8.

Lorsque les neurones de la couche d’entrée sont activés par une information, cette information est
traitée couche par couche jusqu’a ce que finalement la couche de sortie soit activée. Les perceptrons

multicouches sont constitués de 3 parties essentielles [62]:
e Couche d’entrée : pour alimenter le modele d’entrée dans le reste du réseau.

e Couches cachées : pour effectuer les calculs et les transformations mathématiques. Les

perceptrons trouvés dans les MLP ont typiquement des fonctions d’activation non linéaires

o Couche de sorties : pour fournir les résultats du calcul.

Couche Couche Couche de
d’entrée cachée sortie

Figure 2.8 Perceptrons multicouches. Dans cette architecture la couche d’entrée comprend 3
neurones, la couche cachée deux neurones et la sortie un neurone pour un classificateur binaire.
Figure adaptée de [62].
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2.3.1 La rétropropagation

La rétropropagation fait référence a 1’algorithme de calcul du gradient des paramétres des réseaux
de neurones. La méthode parcourt le réseau dans le sens inverse, de la couche de sortie a la couche
d’entrée, selon la régle de la dérivation en chaine [61]. L’algorithme enregistre toutes les variables
intermédiaires (dérivées partielles) requises lors du calcul du gradient par rapport a certains

parametres.

Pour les perceptrons multicouches, les données en entrée du réseau de neurones passent
séquentiellement a travers toutes les couches du réseau jusqu’a la sortie. Cette étape est appelée la
passe avant, et est a 1’origine du nom donné a cette architecture : « réseau de neurones feed-

forward » (FFNN). Un exemple de calcul du gradient est donné dans I’ Annexe A.

2.3.2 Les fonctions d’activations

Une fonction d’activation dans un réseau de neurones peut étre définie comme une fonction de
transfert dont la somme pondérée de ’entrée est transformée en une sortie d’un ou de plusieurs
nceuds dans une couche du réseau [58]. Le choix de la fonction d’activation dans la couche cachée
est important, car elle controle la capacité du réseau a apprendre les caractéristiques de 1’ensemble

des données d’apprentissage.

Les réseaux de neurones étant entrainés par I’algorithme de rétropropagation, il est donc requis que
les fonctions d’activations soient différentiables, ce qui signifie que la dérivée du premier ordre

peut étre calculée pour une certaine valeur d’entrée.
Le Tableau 2.3 présente les trois fonctions d’activation les plus utilisées dans la littérature.

Tableau 2.3 Formules et représentations des fonctions d’activations les plus courantes [58]

Figures Description mathématique

e ] Sigmoide :

, 1
»/ g(X) = m S (0,1)
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Tangente hyperbolique :

g(x) = tanh(x) € (—1,1)

Linéaire rectifiée :

g(x) = max(0,x) € [0, )

La fonction d’activation linéaire rectifiée, ou fonction d’activation ReL U, est peut-étre la fonction
la plus couramment utilisée pour les couches cachées [63]. La fonction d’activation ReLU est
populaire pour les architectures MLP et CNN. Cependant, les réseaux de neurones récurrents

utilisent couramment les fonctions d’activations Tangente hyperbolique ou sigmoides.

2.3.3 Les réseaux de neurones convolutifs

Les réseaux de neurones convolutifs ou encore CNN, sont un type spécialisé de réseaux de
neurones qui sont utilisés pour le traitement des données qui ont une topologie similaire a celle
d’une grille [58]. Cette topologie est retrouvée dans les données de séries chronologiques, qui
peuvent étre considérées comme une grille 1D prenant des échantillons a intervalles de temps
réguliers, et les données d’image, qui peuvent étre considérées comme une grille 2D de pixels. Les
progres dans le domaine de la vision par ordinateur avec 1I’apprentissage profond ont été construits

et perfectionnés principalement sur la base des réseaux de neurones convolutifs.

L’avantage de I’utilisation des CNN est qu’ils peuvent apprendre directement une représentation
interne des données de la série chronologique sans le besoin d’extracteurs de caractéristiques

congus manuellement par ’homme [58].

Les réseaux de neurones convolutifs sont généralement composés de 3 couches [64]:
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e Couche de convolution : La couche de convolution (CONV) utilise des filtres qui
effectuent des opérations de convolution sur les données en entrée par rapport a ses
dimensions et les passe a la couche suivante. Les poids de la couche précédente sont donc
reliés aux poids des couches suivantes. Les hyperparamétres incluent la taille du filtre f et

le pas s. La sortie résultante est appelée carte de caractéristiques ou carte d’activations.

e Couche de Pooling : La couche de mise en commun (POOL) est une opération de sous-
échantillonnage, généralement appliquée apreés une couche de convolution, qui effectue
une certaine invariance spatiale. En particulier, les « pooling » max et moyen sont des
types particuliers de regroupement ou les valeurs maximale et moyenne sont

respectivement prises.

o Couche connectée : La couche enticrement connectée (FC) fonctionne sur une entrée
vectorielle ou chaque entrée est connectée a tous les neurones. Si elles sont présentes, les
couches FC se trouvent généralement vers la fin des architectures CNN et peuvent étre

utilisées pour optimiser des objectifs tels que les scores de classe.

Cependant, dans ce mémoire les réseaux de convolutions 1D présentés a la Figure 2.9 seront
présentés, car les données utilisées (signaux de jauges de déformation et signaux provenant de
centrales inertielles) pour I’application souhaitée consistent en un ensemble de vecteurs d’entrées

unidimensionnels.



22

Opération de Pooling

%_‘ avec N filtres {1x3]

=(IIE =

Entrée temporelle

N Vectorisation
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N
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Convolution 1D avec N
filtres [1x3]

Figure 2.9 Représentation graphique d’un réseau de neurones convolutifs 1D. L’entrée est
alimentée a travers une série de couches de convolution suivies de couches de « Pooling », pour
former des structures arbitrairement profondes. N représente le nombre de filtres dans chaque
couche. L’opération finale consiste a une vectorisation permettant d’alimenter en général un
perceptron multicouche.

L’exemple présenté a la Figure 2.10 présente le principe de fonctionnement des réseaux de

neurones convolutifs.

. Opération  successive de Opération de « max pooling »
I Filtre [1x3] ] [convolution avec un pas de 1 ] Fer (2] avec un pas de 2
1 1 1 1
1 2 2 2 6 6 6 6
1 3 3 3 ] 9 9 9 .
6
12 12 12
4 4 4 12 9 22
5 5 5 15 15 15 15
e 21
6 6 6 18 18 18| 12 |18
7 7 7 21 21 21 21| 21
8 8 s |

Sortie de Sortie de « max
convolution pooling »

Figure 2.10 Exemple d’opérations de convolution et de « max pooling » 1D. Un filtre est
appliqué sur le vecteur d’entrée avec un pas de 1. Cela signifie que le filtre se déplace sur tout le
vecteur d’entrée avec un pas de s = 1. Ensuite, une opération vectorielle est faite entre les



23

¢léments du filtre et les éléments du vecteur d’entrée : ici une somme pondérée. Apres I’opération
de convolution, I’opération de « max pooling » choisit la valeur maximale entre deux valeurs a
partir d’un filtre qui parcourt tous les ¢léments avec un pas de 2.

2.3.4 Les réseaux de neurones récurrents

Les réseaux de neurones récurrents, ou RNN sont une famille de réseaux de neurones capable de
traiter des données séquentielles. Les RNN sont capables de prendre en compte le contexte en
introduisant des variables d’état pour stocker les informations passées, ainsi que les entrées
actuelles, afin de déterminer les sorties [58]. Un réseau de neurones récurrent peut étre considéré
comme plusieurs copies du méme réseau, comme illustré a la voir Figure 2.11, transmettant
I’information contextuelle apprise pour mettre a jour les poids correspondants qui représentent ses

états internes.

yo I\ A
( ) (
@ ‘

Figure 2.11 Illustration d’un réseau de neurones récurrent (RNN). A gauche, ’architecture du
réseau est représentée avec les fleches représentant les connexions récurrentes. Sur le coté droit,
ces connexions sont représentées dans 1’espace, ou chaque pas de temps forme une nouvelle
couche. Figure adaptée de [65].

Un RNN peut soit étre utilisé pour classer une séquence entiere en une seule classe, pour générer
une nouvelle séquence en sortie, par ex. traduire un texte, mais aussi pour créer une séquence a
partir d’une seule entrée comme pour le sous-titrage automatique d’images par I’identification de
son contenu [66]. Dans ce mémoire, la premiére architecture montrée, Figure 2.12, qui consiste a
classer une séquence entiere en une seule classe sera utilisée. Notre entrée sera des données
temporelles provenant des capteurs et la sortie sera une classe de mouvement. Les classes de

mouvement sont décrites a la section 5.3.3.
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Figure 2.12 LSTM architecture « many-to-one ». Analyse de séquence de mouvement : a chaque
pas de temps la séquence de mouvement est évaluée par une cellule LSTM. Le résultat de la
couche est associ¢ aux classes possibles, et est calculé apres chaque pas. Figure adaptée de [66].

Cependant, les RNN standard ont de la difficulté a apprendre des dépendances contextuelles a long
terme. En effet, les RNN sont entrainés en utilisant une version adaptée de 1’algorithme de
rétropropagation: la rétropropagation a travers le temps. A mesure que les calculs de gradient
remontent dans le temps, il y a une tendance a avoir des valeurs de plus en plus €levées ou basses

du gradient, ce qui conduit & une explosion ou une dégradation du gradient [66].

La mémoire a long court terme (LSTM) est une architecture RNN qui résout le probléme de
I’explosion et de la dégradation du gradient. La couche cachée LSTM est composée de blocs de
mémoire Figure 2.13, qui sont des sous-réseaux autoconnectés contenant plusieurs cellules
internes. Grace a des portes multiplicatives, la cellule est capable de stocker et d’accéder a des
informations sur une longue période, Figure 2.14. En d’autres termes, LSTM transporte les données
de diverses étapes a travers toutes les étapes et chaque cellule est capable d’inclure et de supprimer

des informations de ces données tout en traitant une entrée séquentielle [67].
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Figure 2.13 Cellule LSTM. C;_; Représente I’étape précédente. h;_; L’état de la sortie
précédente, x; représente 1’échantillon de la séquence au temps t, C; représente 1’état de la
cellule mis a jour et h, le résultat. Nous avons aussi représenté les portes : la porte d’oublie f; ,la
porte d’entrée i; et la porte de sortie o, [65].
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Figure 2.14 Cellules LSTM a travers le temps. Chaque étape de cellule regoit un échantillon de la
séquence x de la couche d’entrée et envoie un état de cellule mis a jour et la valeur de sortie h a
I’étape suivante. Chaque pas de temps envoie également la valeur h a la couche de sortie [65].

Les étapes de calculs effectués par les cellules LSTM a travers le temps sont présentées. Les valeurs
W (poids) et b (biais) représentent les parameétres du réseau. La cellule LSTM comprend une porte

d’oublie f; pour oublier les informations qui sont plus nécessaires [65], [66] :

fr = o(Wp - [he_y, ] + by) (2.2)
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Une porte d’entrée [65], [66] pour enregistrer I’ information (Calculé comme C; provenant de

I’étape x; et I’étape précédente h,_, qui sera nécessaire :

ip = o(W; - [he-1,xc] + by) (2.3)
Une porte de sortie o, pour controler la sortie [65], [66] :

0 = o(W, - [he—y, xc] + by) (2.4)

Les nouvelles valeurs sont mises a jour suivant ces équations [65], [66] :

Ce=fi*Coq +ip*Cy (2.5)
Ce = tanh(W¢ - [he_q, x¢] + bc) (2.6)
h; = o, * tanh(C,) (2.7)

2.4 L’apprentissage

2.4.1 Les fonctions cout

Les réseaux de neurones sont entrainés a 1’aide d’un processus d’optimisation qui nécessite de
calculer I’erreur du mod¢le par une fonction colt [64]. En général, ces fonctions peuvent étre

classées en deux catégories selon le probléme d’apprentissage : régression ou classification [58].

Les méthodes de régression sont utilisées pour prédire valeurs réelles. Les fonctions coit utilisées
pour ces problémes sont généralement basées sur une mesure de la distance entre les prédictions et
les observations réelles. Une des fonctions coft les plus utilisées pour les problémes de régression

est I’erreur moyenne quadratique (MSE). Elle est évaluée selon la formule la suivante [68] :

2 (i — 9)? (2.8)
n

MSE =

Ou y, représente la valeur cible et y; représente la valeur prédite pour I’échantillon i et n le nombre

total d’échantillons.
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En classification, nous essayons de prédire une valeur d’un ensemble de valeurs catégoriques
finies. Les fonctions colit pour ces problémes sont généralement basées sur une mesure d’entropie.

Deux fonctions sont généralement utilisées : entropie croisée binaire ou catégorielle.

La premiére est utilisée pour des problémes de classification entre une ou deux classes. La seconde

est utilisée pour des problémes de classification ou le nombre de classes est supérieur a 2.

La fonction binaire de colit d’entropie (£) croisée est présentée, avec y représentant la sortie du

réseau et y la valeur cible [68].

L(@,y) = —[ylog(®) + (1 —y)log(1 - )] (2.9

ou y peut-étre vu comme la probabilité que la sortie soit 1, et (1 — ) la probabilité que la sortie

soit 0.

Les problémes ou le nombre de classes est supérieur a deux sont appelés des problémes multiclasse.
Pour les problemes multiclasse, il est important d’encoder les sorties sous une forme vectorielle
binaire dont le nombre d’éléments correspond au nombre de classes k. Par exemple, pour un
probléme de 3 classes, 1’encodage pour €lément appartenant a la deuxieéme classe serait le suivant
y2 = {0,1,0}. Cette notation est communément appelée la notation « one hot ». La fonction coit

(£) pour un probléme de classification multi-classe peut étre définie comme suit [68]:

K
L@V = = ) vilog G) (2.10)
K=1

ol J est le k™€ neeud de sortie et log indique le logarithme népérien. La sortie représente une

distribution de probabilité qu’un exemple de donnée appartienne a chacune des classes.

Apres avoir déterminé notre fonction cott L, le probléme d’optimisation peut étre résumé comme
¢tant la recherche des parameétres permettant de minimiser I’erreur calculée par la fonction cott par

rapport a ’ensemble de données est notée J et est calculée selon la formule qui suit [68].

n
1 P
J= EZL(y@,y@) (2.11)
i=1
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ou L(}?(i), 5;(1')) noté L ® représente la valeur scalaire de la fonction coit calculée pour un exemple
i de I’ensemble de données. Cette fonction est minimisée par rapport a tous les parametres du
réseau et moyennée pour tous les n exemples. C’est ce qu’on appelle la descente de gradient par

lots parce que I’ensemble du lot d’entrainement est utilisé¢ pour calculer la fonction de cott.

2.4.2 Les méthodes d’optimisation

La descente de gradient est de loin le moyen le plus courant et le plus établi d’optimiser les
fonctions colit des réseaux de neurones. La descente de gradient est un algorithme d’optimisation
qui trouve I’ensemble des parameétres d’une fonction colt permettant d’atteindre la valeur minimale

cette fonction [58].

Il existe trois variantes de descente de gradient qui différent par la quantit¢ de données que nous
utilisons pour calculer le gradient de la fonction objectif. En fonction de la quantité de données,
nous faisons un compromis entre la précision de la mise a jour des paramétres et le temps nécessaire

pour effectuer une mise a jour.

2.4.2.1 Descente de Gradient par lot « batch gradient descent »

La descente de gradient par lot calcule le gradient de la fonction colit par rapport a aux parametres
de I’ensemble des données d’entrainement. Il faut donc calculer les gradients de 1I’ensemble de
données d’entrainement pour effectuer une seule mise a jour des parametres. Ainsi, la Descente de
Gradient par lots peut étre trés lente et est insolvable pour les ensembles de données qui ne tiennent

pas en mémoire.

2.4.2.2 Descente de Gradient stochastique « stochastic gradient descent »

La Descente de Gradient Stochastique (SGD) en revanche effectue une mise a jour des paramétres
pour chaque exemple d’entrainement. De ce fait, elle est généralement plus rapide que la descente
de gradient par lot. Cependant, la descente de gradient stochastique effectue des mises a jour

fréquentes avec une variance élevée ce qui entraine une forte fluctuation de la fonction objective.

2.4.2.3 Descente de Gradient par mini-lot « mini-batch gradient descent »

La Descente de Gradient par mini-lot prend enfin le meilleur des deux algorithmes précédents et

effectue une mise a jour pour chaque mini-lot. Ainsi, cet algorithme permet de:
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1. Réduire la variance des mises a jour des paramétres, ce qui peut conduire a une

convergence plus stable.

2. Utiliser des opérations matricielles hautement optimisées pour accélérer I’apprentissage

des réseaux de neurones profonds.

Dans le cas de la Descente de Gradient par lot, la fonction colit /,,,;, est calculée selon la formule

suivante :

B
1N po
Jmp =5 ) £ (2.12)
i=1

ou B représente le nombre d’exemples dans le lot et mb le terme anglais pour « mini-batch ». L®
représente la valeur scalaire de la fonction coit calculée pour un exemple i de I’ensemble de

données

Les méthodes classiques de Descente de Gradient ne garantissent pas nécessairement une
convergence vers un minimum global. Des méthodes plus avancées telles que RMSprop [69] et

Adagrad [70] et Adam ont été proposés [71].

2.4.2.4 L’algorithme d’optimisation Adam

L’estimation du moment adaptatif (Adam) [71] est une autre méthode qui calcule les taux
d’apprentissage adaptatif pour chaque parametre. Cette méthode s’est avérée €tre un meilleur

optimiseur car il tente de combiner les avantages des deux algorithmes RMSprop et Adagrad.

Pour cela, les estimations m, et v, des premiers et deuxiémes moments bruts des gradients noté g,

sont calculés conformément aux équations [71]:
my = Pyme_1 + (1 — B1)g: (2.13)
Ve = Boveoq + (1 = B)gf (2.14)

Ces équations consistent a effectuer des moyennes mobiles exponentielles du Gradient, m,, et du
gradient au carré, v;. Le premier est une estimation du ler moment (la moyenne) et le second est
le 2e moment brut (la variance décentrée). Les hyperparamétres 8, 8, € [0,1) Contrdlent les taux

de décroissance exponentielle de chaque moyenne mobile. Cependant, comme ces vecteurs sont
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initialisés a zéro, ils sont biaisés vers zéro. L algorithme utilise des termes de correction de biais,

présentés dans les équations [71] :

. my
my = 1- gt (2.15)
~ Ut
Ve = 1- 4t (2.16)

Ils les utilisent ensuite pour mettre a jour les parametres, ce qui donne la régle de mise a jour de

I’optimiseur Adam [71]:
U .

—m

~

Dy + €

Or11 =0 — (2.17)
Les auteurs [71] proposent les valeurs par défaut suivantes a = 0.001, f; =0.9, B, =
0.999 et € = 1078, ils montrent empiriquement qu’Adam se compare favorablement a d’autres

algorithmes de méthode d’apprentissage adaptatif.

2.5 Les méthodes de régularisation

La différence entre 1’erreur faite sur I’ensemble d’entrainement et I’erreur faite sur I’ensemble de
tests peut étre considérée comme ’erreur de généralisation. Le but des méthodes de régularisation
est de réduire cette erreur et de ce fait d’améliorer la capacité de généralisation des réseaux

neurones. Il existe plusieurs stratégies pour le réduire I’erreur de généralisation [58], [72].

2.5.1.1 Régularisation L2

La régularisation L2 est une fonction dite de « perte de poids ». On la retrouve dans la littérature
sous les appellations : régularisation Ridge, ou régularisation Tikhonov. Elle consiste a ajouter un
terme de pénalité A a la fonction cofit J;, proportionnellement a la taille des poids dans le modele

[68].

2
Jiz =]+ EIIWII2 (2.18)
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2
Jiz =]+ 52 |W;|? (2.19)
i
2
Jio =]+ §WTW (2.20)

La fonction de colt J;, est minimisée par rapport a tous les poids W et biais du réseau. W;;
représente les éléments de la matrice de poids W. En raison de la pénalité qui augmentera le cott
si les poids sont trop grands, cette méthode de régularisation forcera les poids a étre petits. Le

parametre A de régularisation est donc un autre hyperparametre a régler.

2.5.1.2 « Dropout »

C’est une méthode de régularisation nécessitant une faible puissance de calcul et efficace pour
réduire I’erreur sur I’apprentissage et de généralisation dans les réseaux de neurones profonds. Un
seul modele peut étre utilisé pour simuler un grand nombre d’architectures de réseau de neurones
différentes en supprimant de maniére aléatoire (paramétre de probabilité¢) des neurones pendant

I’entrainement [73].

2.5.1.3 Arrét précoce « Early Stopping »

Une pratique conventionnelle en apprentissage machine est de diviser I’ensemble de données en 3
ensembles distincts : ’entrainement, la validation et le test. Le but étant de de pouvoir utiliser la
plus grande partie des données pour entrainer le modele et de garder un plus petit échantillon pour
suivre les performances du réseau sur de nouvelles données, par exemple sur I’ensemble de

validation.

Il est important d’entrainer le réseau suffisamment longtemps pour qu’il soit capable d’apprendre
la relation entre les entrées et les sorties, mais de ne pas entrainer le modele trop longtemps au

point d’apprendre des caractéristiques spécifiques aux données d’entrainement seulement.

Suivant cette logique, 1’arrét précoce « early stopping » consiste a entrainer ’algorithme sur
I’ensemble des données d’entralnement, mais a arréter I’entrainement au moment ou les
performances sur I’ensemble de données de validation commencent a se dégrader. Cette approche
est simple, efficace et largement utilisée pour entrainer les réseaux de neurones profonds. Il est

facile d’utiliser I’arrét précoce sans endommager la dynamique d’apprentissage. Ceci esta I’opposé
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du « dropout » ou la régularisation L2. En particulier pour le dernier, il faut faire attention a ne pas
utiliser des valeurs trop grandes du paramétre A. En effet, un tel cas pourrait conduire le gradient a

étre bloqué dans un minimum local et I’empécher d’atteindre le minimum global.

2.5.1.4 « Data augmentation »

Pour les modeles d’apprentissages profonds, une quantité insuffisante de données d’apprentissage
peut conduire le modéele a apprendre des caractéristiques spécifiques aux données d’entrainement,
ce qui conduit le modéle a avoir une mauvaise capacité de généralisation. Le nombre de données

d’apprentissage est proportionnel aux nombres de paramétres que peut apprendre le modele.

Une technique utilisée pour résoudre le probléme du nombre insuffisant de données consiste a
appliquer différentes transformations sur les données disponibles pour synthétiser de nouvelles
données. Cette approche consistant a synthétiser de nouvelles données a partir des données
disponibles est appelée « augmentation de données ». Pour les images, I’augmentation de données
peut se faire en appliquant des transformations géométriques (rotation, mise a I’échelle, translation,
etc.) aux données [74]. Pour des données temporelles, de nouveaux signaux peuvent étre générés

en rajoutant du bruit gaussien dans le signal de base [23].

2.6 Mesure de la performance de ’algorithme de classification

L’évaluation des algorithmes d’apprentissage machine est une partie essentielle de tout projet. Un
mauvais choix des métriques pour évaluer son modéle peut vous induire en erreur sur les
performances attendues de votre modele [75].1ci, le mot « performance » est utilisé pour désigner

la capacité du modele a attribuer a un mouvement la classe de mouvement correspondante.

La précision de la classification est la métrique la plus utilisée pour mesurer les performances des

mode¢les. Elle est calculée selon la formule suivante [76]:

Nombre de prédictions correctes

Précision de la classification = (2.21)

Nombre total de prédictions
Cette mesure de performance fonctionne bien lorsque les données sont balancées : c’est-a-dire que
les nombres de données appartenant a chaque classe sont égaux. Dans le cadre de cette recherche,
les classes sont balancées. Prenons 1I’exemple d’une classification binaire avec des données non

balancées, ou 95% des données d’entrainement sont de la classe A et 5% de la classe B. Ainsi, le
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modele peut facilement obtenir une précision de classification de 95% en prédisant simplement

que chaque échantillon d’entrainement appartient a la classe A.

Ainsi, on fait souvent recours a une matrice de confusion, Tableau 2.4 qui nous permet de décrire

la performance compléte de notre modéele [76] .

Tableau 2.4 Matrice de confusion pour une classification binaire

Classes prédites

Matrice de confusion

Positif (P) Négatif (N)
Classes Positif (P) VP FN
cibles S
Négatif (N) FP VN

Ce tableau révele 4 importants termes :
e Vrai Positif (VP) : L’algorithme a prédit OUI et la sortie réelle est également OUI.
e Vrai Négatif (VN): L’algorithme a prédit NON et la sortie réelle est également NON.
e Faux Positif (FP): L’algorithme a prédit OUI et la sortie réelle est également NON.

e Faux négatif (FN): L’algorithme a prédit NON et la sortie réelle est également OUI

Précision de classification = VP +VN (2.22)
récision de classification = VP FP tFN T FP .

Une mesure plus avancée est le score F1 qui est la moyenne harmonique entre la précision et le
rappel. La plage pour le score F1 est [0, 1]. Il vous indique la précision de votre classificateur
(combien d’instances il classe correctement), ainsi que sa robustesse (il ne manque pas un nombre

important d’instances). Le score F1 est calculé selon 1’équation qui suit [76]

Precision X Rappel
F1=2 — (2.23)
Precision + Rappel
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Cependant, le score F1 présente certains inconvénients, en particulier lorsque les données sont non
balancées. Une mesure qui est plus robuste face a des classes non balancées est le Coefficient de
Corrélation de Matthew (MCC) qui est calculé comme suit [75].

VP X VN —FP XFN

et = JOVP + FP)(VP + FN)(VN + FP)(VN + FN) (224)

Le MCC sera 1 pour un classificateur parfait et O pour un classificateur aléatoire. Un classificateur
inverse aura un MCC de -1(dans ce cas il faut juste inverser les prédictions pour obtenir le
classificateur parfait). Ce score peut étre appliqué pour les problemes de classification multiclasse
cependant, toutes les classes doivent étre présentes dans la sortie de classification, sinon la mesure

devient indéfinie [75].

Pour résumer, la performance du mod¢le de classification est evaluée par les métriques suivantes :
e La précision de classification qui sera présenté dans une matrice de confusion
e Le MCC du modele
La précision sera mesurée pour chacune des 10 classes de mouvement et globalement pour les
différents modeles. Le MCC sera mesuré pour les différents modéles pour valider la précision de
classification. En effet, un modéle ayant une précision de classification élevée devrait avoir un
MCC proche de 1.
Le Tableau 2.5 fait un résumé des criteres de conception.
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Tableau 2.5 Résumé des criteres de conception

No Texte de référence Fonction Critere

Développer un systéme de mesure
permettant de déterminer les
intentions de mouvement du membre
supérieur.

1.0

Mesurer des déformations multiaxiales de la | Enregistrer les déformations selon 2 axes.
peau

1.1 ili j Sf i RT
Rl bauseile b s Etablir un contact conforme avec la peau

e et Ne pas se décoller de la peau durant 24h.

Enregistrer les accélérations linéaires du

Acquérir les accélérations linéaires membre selon 3 axes cartésiens (ax, ay, az)

12 Utiliser des centrales inertielles a une fréquence de 100Hz
’ Enregistrer les vitesses angulaires du
Acquérir les vitesses angulaires membre selon 3 axes cartésiens (ax, ay, az)

a une fréquence de 100Hz

Etre capable d’acquérir les signaux
Acquérir et traiter les données provenant des | provenant des jauges de déformation et les
différents capteurs. signaux provenant des centrales inertielles a
une fréquence d'acquisition de 20Hz-200Hz

1.3 | Faire un circuit d'acquisition

) ) Permettre aux capteurs de communiquer
Avoir une architecture de P q

. , Avoir une fréquence de transmission de 100
1.4 sans-fil et d’enregistrer les données sur q

communication sans-fil L. Hz-250Hz
I’ordinateur
. . Permettre une utilisation dans les activités | @ Avoir une masse < 500g / capteur
1.5 | Avoir un systéme portable 1 . .
quotidiennes e Avoir une taille < 15cm x15cmx 5 cm
Permettre d’utiliser le systétme de fagon L .
. . . ) , . Ne pas briser a la suite des mouvements de
1.6 | Avoir un systéme robuste répéter sans que les jauges de déformation ou

['utilisateur

les connexions se brisent
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Développer un algorithme intelligent

2.0 | permettant de détecter des intentions
de mouvement.
Permettre de prendre en compte la nature |  Précision de classification
)1 Utiliser un algorithme temporelle des données e  MCC du modéle
) d’apprentissage profond Permettre d’extraire les caractéristiques | ® Précision de classification
importantes des signaux e MCC du modele
29 Reconnaitre I’intention de Etre capable de distingu;r différents | @ Précision de classification
’ mouvement mouvements du membre supérieur e MCC du modéle
73 Avoir un algorithme facile a B el Pouvoir étre implémenter sur un

implémenter sur un microcontrdleur

microcontroleur ESP32 HUZZAH 32

*MCC : Coefficient de Corrélation de Matthew
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CHAPITRE 3  JUSTIFICATION DU PROJET DE RECHERCHE

3.1 Résumé de la problématique

Les différentes problématiques reliées a I’utilisation des capteurs SEMG ont motivé la recherche
d’alternatives. Cependant les solutions proposées dans la littérature présentent deux désavantages

importants :

e Lestechniques de fabrication sont hautement spécialisées ce qui rend difficile la production

de masse.

e [L’utilisation des matériaux flexibles est peu commune et I’intégration de la miniaturisation

de I’¢électronique est difficile.

Les alternatives proposées pour la majorité, sont utilisés dans un environnement contrélé et non
dans des applications réelles. Dans cette optique, ce travail de maitrise met a I’avant la possibilité
d’utiliser des jauges de déformation pour développer un capteur capable de détecter les contractions

musculaires au lieu des SEMG.
A notre connaissance, 1’état de 1’art révéle deux problémes majeurs :

1. Les problémes courants des SEMG ont été résolus par une premiere preuve de concept de

bracelet utilisant la déformation. Mais celui-ci avait encore des limites.

2. La combinaison de jauges de déformation et d’IMU n’a jamais été étudiée pour détecter

I’intention de mouvement humain.

3.2 Objectif général

Dans ce contexte, I’objectif de cette étude est de développer un systéme portable pour identifier les
intentions de mouvement en combinant des jauges de déformation et des centrales inertielles.

La principale hypothése de recherche est la suivante :

e La combinaison entre les jauges de déformation et les IMUS améliorera la capacité de

détecter I’intention de mouvement des membres supérieurs.



38

3.3 Objectifs spécifiques
L’objectif général de cette étude peut se diviser en trois objectifs spécifiques (OS).

e OS1 : Développer un capteur a base de jauges de déformation pour mesurer les contractions

musculaires.

e OS2 : Développer un systeme de centrale inertielle pour mesurer les accélérations linéaires

et les vitesses angulaires de 1’avant-bras et du poignet.
e (OS3: Développer un algorithme pour détecter des intentions de mouvement.

e 0OS4: Valider le fonctionnement du systéme intégré.
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CHAPITRE4 METHODOLOGIE

La méthodologie présentée dans cette section est complémentaire a celle présentée dans le chapitre
5. Cette section a pour objectif de présenter de I’information additionnelle pertinente a 1’étude.
Aussi, une méthodologie supplémentaire sur I’implémentation d’un algorithme d’apprentissage

profond pour la classification des mouvements du membre supérieur y est également présentée.

4.1 Conception du capteur utilisant une centrale inertielle

Cette section présente le systeme développé pour suivre en temps réel I’accélération linéaire et la
vitesse angulaire du membre supérieur. Le systeme développé utilise un capteur commercial a

faible colt intégrant un accélérometre, un gyroscope et un magnétometre.

4.1.1 Choix de la centrale inertielle

Les IMUs permettent d’enregistrer des données cinématiques. Trois IMUs, Figure 4.1, ont été
testées dans le cadre du projet. A savoir le modéle Fermion de 10 DDL de DfRobot, et les deux

modeles a 9DDL de Adafruit que sont le BNOOSS5 et le NXP.

©rxoss7ee»r ASZ1002

o0 s

= '
P |

VIR - GND  SDA

GNG  SOA

Figure 4.1 Les différentes centrales inertielles testées dans le cadre du projet. A gauche, la
centrale inertielle a 10 DDL de DfRobot. Au milieu, la centrale inerticlle BNOO055 a 9 DDL de
Adafruit. A droite, la centrale inertielle Fermion de 9 DDL de Adafruit.

Les tests effectués avec ce capteur ont permis d’en sélectionner un. Les critéres qui ont été utilisés

sont les suivants :
1. La tolérance au bruit de 1’accélérometre
2. Ladérive du gyroscope

3. La disponibilité de librairies permettant de faciliter I’implémentation et 1’acquisition des

données.
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4. La disponibilité de librairies permettant de calibrer le capteur.

Parmi ces capteurs, le capteur qui a été retenu est le BNOOSS. En effet, la centrale inertielle
BNOO55 de 9DOF est basée sur le capteur intelligent d’orientation absolue de Bosh. Il intégre un
accélérometre triaxial 14 bits, un gyroscope triaxial 16 bits avec une plage de = 2000 degrés par
seconde, un géomagnétique triaxial et un microcontrdleur cortex M0+ 32 bits exécutant la fusion
de capteurs dans une seule composante. le capteur intelligent d’orientation absolue de Bosh intégre
un accéléromeétre, un magnétometre et un gyroscope MEMS, et en les placant sur une seule matrice
avec un processeur ARM Cortex-MO a grande vitesse, il arrive a traiter toutes les données de
I’accélérometre, du gyroscope, du magnétometre puis extraire la fusion du capteur en respectant
les exigences d’un fonctionnement en temps réel et a produire des données qui peuvent étre

utilisées par un non-expert du traitement de données cinématiques [77].

4.1.2 Calibration de la centrale inertielle

Pour s’assurer que les données provenant des différents capteurs (accélérométre, gyroscope,
magnétometre) du BNOOSS soient correctes, il est primordial d’effectuer une calibration de ces

capteurs. Pour ce faire, le guide de calibration fournie par MathWorks [78] a été utilisé.

Calibration du Magnétoméetre

Avant de procéder a la calibration, il faut s’assurer que le capteur est ¢loigné de toute interférence

magnétique. Ensuite, la procédure est la suivante :
1. Tenir le capteur parallele au sol et déplacez-le selon un schéma en forme de 8, Figure 4.2.

2. Utiliser la fonction « readCalibrationStatus » de la librairie Open-Source fournie par

Adafruit pour lire I'état de calibration du capteur [79].

3. Répéter ce processus jusqu'a ce que la valeur de calibration du magnétometre soit « Full ».
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Figure 4.2 Calibration de magnétometre. Figure tirée de [78]

Calibration de accélérométre

Pour calibrer complétement I’accéléromeétre du capteur BNOOSS :

1. Placer successivement le capteur BNOO55 dans les six positions stables, Figure 4.3.

pendant quelques secondes chacune.

2. Utiliser la fonction « readCalibrationStatus » de la librairie Open-Source fournie par

Adafruit pour lire 1'état de calibration du capteur [79].

3. Répéter ce processus jusqu'a ce que la valeur de calibration de 1'accélérométre soit « Full ».
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Figure 4.3 Calibration de l'accéléromeétre. Six positions stables de références. Figure tirée de[ 78]

Calibration du gyroscope

Pour calibrer complétement le gyroscope du capteur BNOOSS :
1. Placer le capteur dans n'importe quelle position stable pendant quelques secondes.

2. Utiliser la fonction « readCalibrationStatus » de la librairie Open-Source fournie par

Adafruit pour lire I'état de calibration du capteur [79].
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3. Répéter ce processus jusqu'a ce que la valeur de calibration du gyroscope soit « Full ».

Lorsque le processus de calibration est terminé, le code fournit des valeurs de décalage. Ces valeurs
de décalages sont ensuite appliquées a chacun des axes du capteur. Cette méthode permet de
conserver les valeurs de calibrations et nous évite ainsi de calibrer le capteur avant chaque

utilisation.

4.2 Conception du capteur utilisant des jauges de déformation

Cette section présente de I’information additionnelle sur la conception, non incluse dans I’article,
du capteur utilisant des jauges de déformations.
4.2.1 Choix du type de jauges de déformation

Différents tests ont été effectués sur différents types et tailles de jauges de déformation, Tableau

4.1. Les tests consistaient a appliquer une déformation aux jauges et a mesurer l'intensité du signal.

Tableau 4.1 Les différents types de jauges testées dans le cadre du projet de recherche

18]t Lol
Reference BF350-3AA CF120-10AA BF(BA)-120-2EB
Résistance (Ohm) 350 120 120
Tolérance sur la valeur < 0.4 ohm < 0.4 ohm <0.4 ohm
nominale
Matériel de la grille Constantan Constantan Constantan
Dimension de la grille(mm) 3.2x3.1 2.3x2.7 2.3x3.7
Dimension du support(mm) 7.3x4.1 14x4.5 8.6x7.2
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La jauge BF350-3AA a une résistance nominale de 350 Ohm et dimension de 7.3x4.1mm. Cette
jauge est petite et difficile a souder, mais elle présente des avantages au niveau de la détection de
petites déformations. La jauge CF120-10AA a une dimension adéquate pour faciliter les soudures.
Elle a une résistance nominale de 120 Ohm et permet également de mesurer de petites
déformations. La jauge BF(BA)-120-2EB est configuré en pont complet de Wheatstone. Cette
jauge permet de réduire la taille du circuit d’acquisition en €limant les résistances requises pour la
configuration en quart de pont qui est utilisée pour les jauges BF350-3AA et CF120-10AA.
Cependant, cette jauge présente une faible variation de résistance a la déformation et la valeur de

la résistance dérive apres quelques cycles de chargement-déchargement.

La jauge CF120-10AA a ét¢é choisie, car elle est facile a souder et elle présente une bonne réponse

linéaire a la déformation.

4.2.2 Matrice de jauges de déformation

Pour arriver au systéme présenté dans ’article Chapitre 5, différentes itérations ont été réalisées.
Les deux parametres les plus importants qui ont été étudiés ont été 1’orientation des jauges et le

matériau utilisé pour établir le contact avec la peau.

4.2.2.1 Orientation des jauges

Les travaux de Zizoua et al [41] avaient déterminé 1’orientation optimale des jauges pour le
mouvement de flexion et extension du coude. En effet, leurs travaux ont démontré que la peau se
déformait de 11% selon la direction verticale et 6.5% selon la direction horizontale. La déformation
la plus grande a ét¢ mesurée selon la longueur du biceps brachii (direction verticale). Ainsi, les

jauges ont été placées de manieére que leur trame soit alignée avec cette direction.

Une premiere version de bracelet de jauges de déformation a été congue avec les jauges alignées

verticalement comme présentée sur la Figure 4.4 et la Figure 4.5.
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Figure 4.4 PCB flexible avec des jauges suivant une direction unique

T

Figure 4.5 PCB flexible avec les jauges de déformation soudées suivant une direction unique

Cependant, mesurer les déformations selon la direction horizontale permet d’avoir une information
additionnelle sur la déformation de la peau. Cette information peut s’avérer trés utile pour
I’algorithme de classification afin de distinguer les différents mouvements. Aussi, les mouvements
de supination et de pronation de I’avant-bras entrainent une déformation plus importante de la peau
dans la direction horizontale. Il est donc nécessaire d’enregistrer les déformations suivant cet axe.

Un second modele a donc été développé et est présenté sur la Figure 4.6 et la Figure 4.7.

Figure 4.6 PCB flexible avec les jauges suivant deux directions différentes
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Figure 4.7 PCB flexible avec les jauges de déformation soudées suivant deux directions
différentes

4.2.2.2 Fabrication du bracelet

Pour la fabrication du bracelet, il a été¢ important de trouver un matériau hypoallergénique, assurant
un bon contact avec la peau et assez flexible permettant de détecter de petites déformations. Trois
techniques différentes ont été testées : La bande de silicone, I’impression 3D et 1’utilisation de

bandes de kinésiologie.

4.2.2.2.1 Bande de silicone

Cette technique a été basée sur les travaux de [41]. Elle a consisté a insérer les jauges de
déformation dans du silicone. Le silicone dragon skin de Smooth-on (Smooth-On) a été utilisé pour
son extréme résistance et son extensibilité. Il peut atteindre plusieurs fois sa taille et reprendre sa
forme d'origine sans perdre ses propriétés mécaniques (allongement a la rupture : 1000%) et surtout

peut étre facilement préparée a température ambiante.

Les étapes de la fabrication peuvent étre résumées comme suit :

1. Souder les jauges de déformation sur le PCB flexible. Un total de 6 jauges doit étre soudé
sur la structure flexible.

2. Meélanger les parties A et B du silicone selon les instructions. Une quantité de 10g de
chaque partie a été utilisée, Figure 4.8 (a).

3. Verser le mélange sur une plaque en acrylique

4. Passer avec I’applicateur de film mince pour avoir une épaisseur de couche de silicone de
0.1mm, Figure 4.8 (c).

5. Attendre que le silicone se solidifie puis pulvériser la surface du silicone avec du liquide
qui favorise I’adhérence des objets, Figure 4.8 (b)

6. Déposer le PCB flexible sur la couche mince de silicone


https://www.smooth-on.com/
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7. Pulvériser la surface du PCB flexible avec du liquide qui favorise I’adhérence des objets
sur le silicone, Figure 4.8(b)

8. Préparer un deuxieme mélange des parties A et B du silicone selon les instructions. Une
quantité de 10g de chaque partie a été utilisée. Figure 4.8 (a)

9. Passer avec I’applicateur de film mince pour avoir une épaisseur de couche de silicone de
0.1mm, Figure 4.8 (¢).

10. Attendre que le silicone se solidifie et découper le contour pour former le bracelet de

silicone instrumentalisé avec les jauges.
= LN
©f I
LA

(a)

Figure 4.8 (a) Silicone liquide dragon Skin 10 FAST de Smooth-On. (b) APHIX de Smooth-On :
agent adhérant permettant de coller la majorité des matériaux sur du silicone. (c) Applicateur de
de film réglable de 100 mm avec dispositif de préparation de film humide micrométrique 0-3500
um de largeur.
Le résultat obtenu est présenté sur la Figure 4.9 et 4.10.

Figure 4.9 PCB flexible intégré dans un bracelet de silicone avec les jauges de déformations
suivant une direction unique. La bande autour du PCB flexible a ét¢ une astuce pour ne pas avoir
du silicone a cet endroit.
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Figure 4.10 PCB flexible intégré dans un bracelet de silicone avec les jauges de déformations
suivant deux directions différentes

4.2.2.2.2 Impression 3D de matériau flexible

Cette technique consiste a imprimer un bracelet flexible avec une imprimante 3D. Le matériau
qui a été utilisé est le Ninja Flex de la compagnie NinjaTeck (Ninjaflex 3D printer filament). Ce
matériau est I’un des matériaux d’impression 3D les plus flexibles disponibles sur le marché. Le
matériau a une dureté de 85A et peut s’allonger jusqu’a 660% sans usure ni fissure. Le bracelet a
été¢ imprimé avec une Prusa I3 MK3S ( imprimante original Prusa I3 MK3S). La procédure de
fabrication est comme suit :

1. Imprimer une couche mince de NinjaFlex ayant une épaisseur de 0.3mm

2. Placer les jauges de déformation au-dessus de la couche imprimée

3. Imprimer une couche mince de NinjaFlex ayant une épaisseur de 0.3 mm au-dessus des
jauges

Le résultat obtenu est présenté sur la Figure 4.11.

Figure 4.11 Impression 3D flexible d'un bracelet en TPU intégrant des jauges de déformations


https://ninjatek.com/shop/ninjaflex/
https://www.prusa3d.fr/original-prusa-i3-mk3-fr/
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4.2.2.2.3 Utilisation d’une bande kinésiologique

Cette technique a consisté a utiliser directement une bande kinésiologique pour établir le contact

entre la peau et la matrice de jauges de déformation.

1. Souder les jauges de déformation sur le PCB flexible. Six jauges doivent étre soudées sur
la structure flexible.

2. Déposer la structure sur une bande kinésiologique

Le résultat obtenu est présenté sur la Figure 4.12

Figure 4.12: Bande kinésiologique instrumentalisée avec une matrice de jauges de déformation

4.2.3 Traitement sur platine d’expérimentation

Pour la platine d’expérimentation, la chaine de mesure [54] des capteurs a base de jauges de

déformation a été adaptée. La Figure 4.13 présente les différentes étapes de cette chaine de mesure.
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Corps d’épreuve — Détecteur
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(Muscle) action du corps (Jauge)
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— (Quart de Pont Wheatstone)
Alimentation DC
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LECTURE CONTROLE
(Convertisseur : Analogue/Numérique < AUTOMATIQUE
Arduino Uno) (Arduino Uno)
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ENREGISTREMENT
(Matlab)
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Figure 4.13 Chaine de mesures des capteurs a base de jauges de déformation. Figure adaptée de

[54]

Les ¢léments importants de cette chaine de mesure sont les suivants :

e Le capteur : Bracelet en silicone contenant des jauges de déformation pour détecter les
contractions musculaires.

e Le conditionneur : Quart de Pont de Wheatstone permettant de mesurer avec précision la
variation de la résistance des jauges.

e [’alimentation : Une source d’alimentation stable avec une précision de 1’ordre du
centieme de volt.

e Le multiplexeur : Un composant permettant d’utiliser plusieurs capteurs.

e L’amplification : Un composant permettant d’augmenter 1’intensité du signal.

o La lecture et ’enregistrement : Matlab pour présenter les données en temps réels, les
traiter et les enregistrer.

L’implémentation de cette chaine de mesure a permis de développer le circuit présenté a la Figure

4.14. La Figure 4.15 présente la platine d’expérimentation qui a été développée.
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3

Figure 4.14 Circuit électrique de la carte d'acquisition des signaux provenant des jauges de
déformation

i@

SRR
IGEIBIO 0

Yy,
|

Figure 4.15 Platine d'expérimentation reproduisant le schéma électrique présenté a la Figure 4.14

Conditionnement du signal :
Dans ce circuit, quatre ponts de Wheatstone (quart de pont) ont permis le conditionnement du signal

provenant de quatre jauges de déformation. Chaque pont de Wheatstone a été alimenté par une
source de tension de 5V provenant d’une source d’alimentation précise (£ 0.01 mV). La stabilité
de la source de tension est importante pour assurer la stabilité des ponts de Wheatstone. Un
potentiometre linéaire dont la valeur nominale de résistance est de 500 Ohm a été utilisé pour

équilibrer le pont de Wheatstone. Ce potentiométre a un nombre de tours de 20 permettant d’avoir
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une bonne précision sur la valeur de résistance. Les résistances de ce circuit ont une tolérance de
+1%, ce qui a facilité I’équilibrage du pont de Wheatstone. Le signal provenant des jauges a donc
¢été acheminé aux deux multiplexeurs.

Multiplexage :

L’utilisation des multiplexeurs a permis d’augmenter le nombre d’entrées analogiques en lisant
séquentiellement chacune des entrées du multiplexeur. 11 a aussi permis d’utiliser un seul
amplificateur et un seul convertisseur analogique digital (ADC) pour amplifier le signal provenant
des jauges. Un amplificateur est généralement utilisé pour un pont Wheatstone[80]. L’utilisation
d’un multiplexeur permet d’utiliser un seul amplificateur pour tous les ponts de Wheatstone. Ainsi,
cette configuration nous assure une réduction de la taille du systéme d’acquisition et de sauver des
colts sur les équipements [41]. Le multiplexeur utilis¢ (CD74HC4067) a 16 entrées analogiques
contrdlées par 4 signaux digitaux.

Amplification :
Apres le multiplexage suit 1’étape de I’amplification. Le pont de Wheatstone a permis de traiter les

signaux analogiques en transformant les petites variations de résistance en un différentiel de
voltage. Ensuite, I’amplificateur d’instrumentation amplifie le signal a une valeur proche de la

valeur référence du convertisseur analogique digitale du microcontrdleur (Arduino Uno).

Pour la platine d’expérimentation, I’amplificateur d’instrumentation AD623 a été sélectionné, car

il présente les propriétés suivantes :

e Facilité d’utilisation et mise en ceuvre

e Rejet du mode CMRR jusqu’a 200Hz

e Plage d’entrée de tension s’étend jusqu’a 150mV en dessous de la tension de référence
e Gain variable de 1 a 1000.

e Alimentation unique (Ex : +5V)

Afin de déterminer les parametres adéquats pour le bon fonctionnement de 1’amplificateur, la

procédure suivante a ¢té utilisée :

1. Concevoir un pont de Wheatstone avec une seule jauge de déformation.
2. Mesurer la différence de voltage provenant du pont avec un voltmetre digital.

3. Déformer la jauge au maximum dans les deux directions afin de déterminer le différentiel
de voltage maximum que 1’on peut obtenir.



4. Noter la différence de voltage maximum comme étant Vditr= + 2mV

5. Connecter Vs- au GND pour utiliser I’amplificateur avec une seule source de voltage de

+5V.

6. Connecter Vier a une source de voltage de 2.5V pour créer un décalage afin de lire les

différentiels de voltage négatifs.

7. Déterminer les valeurs du mode commun (Vem) a I’aide de fiche technique.

L’outil proposé par Analog Device [81] a permis de représenter et de déterminer les caractéristiques

de fonctionnement de I’AD623. La valeur du gain a ét¢ ajustée a 450 en utilisant une résistance de

223 Ohm.
Ditterential - \

Vem (V)

Vout (V) (typical limits at 25C)

053,426

Figure 4.16 Outil permettant de choisir les caractéristiques et la plage de lecture de
l'amplificateur AD623 [81].L’interface a droite permet de régler les paramétres de

I’amplificateur. L ’interface a gauche permet de visualiser la plage de lecture en fonction des
parametres choisis.

Lecture Arduino et enregistrement Matlab

Pour la lecture des données, un code sur la plateforme Arduino a été développé pour contrdler la
lecture des signaux provenant des jauges de déformation. Afin de visualiser les données en temps
réel, le programme Matlab a été utilisé pour sa puissance de calcul et des fonctions disponibles

pour le traitement de signal. Les librairies ‘Signal Processing Toolbox’ et ‘Filter Design’ ont été

utilisées.



https://www.mathworks.com/solutions/signal-processing.html
https://www.mathworks.com/discovery/filter-design.html
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4.2.4 Remplacement de la platine d’expérimentation

Apres avoir vérifié le fonctionnement de la platine d’expérimentation, des changements de
composantes ont €té effectués pour mieux répondre aux besoins de notre application. La description
des besoins et la conception du nouveau systeme ont été présentées dans I’article, Chapitre 5. Les

changements majeurs sont présentés ci-dessous.

1. Remplacement de la carte Arduino Uno par I’ESP32. L’ESP32 permet d’avoir une
communication sans fils entre les différents capteurs. Ce microcontroleur a également une
puissance de calcul plus élevée pour effectuer les calculs nécessaires pour l'identification

des mouvements en temps réel a bord

2. Remplacement de [I’amplificateur AD623 avec I’ADS1256. L’ADSI1256 est un
convertisseur analogique-numérique (A/N) 24 bits a trés faible bruit. Il a plus de résolution

que A/N du Arduino Uno qui est utilisé avec I’AD623.

3. Développement d’une carte de circuit imprimé (PCB) pour rendre le systéme compact.

4.3 Ensemble de données

L’étude présentée dans I’article, Chapitre 4 a porté sur un sujet unique. Ce sujet a effectué une
séquence de mouvements prédéfinie. Une méthode basée sur I’intensité du signal a été utilisée pour

identifier 9 mouvements du membre supérieur.

Cette section présente la méthodologie complémentaire qui a été utilisée pour développer un
algorithme d’apprentissage profond pour identifier 10 mouvements du membre supérieur. Ainsi, la
méthodologie a consisté a collecter des données sur 7 personnes saines volontaires (3 personnes de
sexe masculin d’age moyen de 23 ans et de taille moyenne 1.72m; 4 personnes de sexe féminin
d’age moyen de 22 ans et de taille moyenne 1.67m) pour créer une base de données des signaux
provenant de la fusion de capteurs présentée dans l'article, Chapitre 5. Avant le début de chaque
session d’acquisition des données, chaque sujet a re¢u une explication écrite et orale de l'expérience
elle-méme. Les participants ont fourni un consentement par la signature d’un formulaire de
consentement. L'étude a ét€ approuvée par le comité d'éthique de la recherche du Centre hospitalier

universitaire Ste-Justine, Montréal, Canada.
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4.3.1 Placement des capteurs

Le placement des capteurs pour I’acquisition des données suit le modele utilisé dans I’article,

Chapitre 5, Figure 5.2.

4.3.2 Acquisition des signaux

La méthode d'acquisition a utilisé les capteurs congus pour enregistrer la cinématique du membre
supérieur et l'activit¢é musculaire correspondante. Cette section présente plus de détails sur

I’architecture utilisée pour la collecte des données dans ’article, Chapitre 5.

Dans cette architecture, les 3 capteurs, le bracelet de jauges de déformation et les deux IMUs,
communiquent avec le capteur central (Bracelet (B)) par le protocole sans-fil ESP-NOW, Figure

5.8. Ce dernier quant a lui communique avec 1’ordinateur par une communication UART.
Ainsi, les données suivantes ont été transmises par le protocole ESP-NOW :

e Bracelet (AB) : signaux enregistrés par les 6 jauges de déformations provenant du bracelet
placé sur I’avant-bras. Ces signaux ont été identifiés par les lettres AB pour Avant-bras et

un numéro pour indiquer la position de la jauge.

e IMU(1): les trois accélérations linéaires et les 3 vitesses angulaires provenant de 'IMU

placée sur I’avant-bras.

e IMU(2): les trois accélérations linéaires et les 3 vitesses angulaires provenant de 'IMU

placée sur le bras.

Un total de 18 signaux a été envoyé par le protocole ESP-NOW. Ensuite, la centrale elle-méme a
été connectée au bracelet de jauges de déformations placé sur le bras. En plus de recevoir les 18
signaux par la communication sans-fil, elle s’est chargée d’acquérir 6 signaux provenant du
bracelet de jauges de déformation placée sur le bras. Ces signaux ont été¢ identifiés par la lettre B

pour bras et un numéro pour indiquer la position de la jauge.

Un total de 12 signaux provenant des jauges de déformation a été enregistré pour chaque
mouvement. En plus de ces signaux, les accélérations linéaires triaxiales et les vitesses angulaires
provenant de deux IMUs ont été utilisées. Un total de 24 signaux a été obtenu en combinant les

signaux des jauges de déformation et des centrales inertielles
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4.3.3 Exercices

Les exercices effectués pour des fins de collectes de données sont identiques aux exercices
présentés dans I’article, Chapitre 5, Figure 5.3 Ces mouvements ont été choisis sur la base de la

littérature pertinente et les directives de pratique standard de réadaptation [24].

4.3.4 Collecte des données

Pour chaque session d’exercices en laboratoire, les sujets ont effectué les 10 mouvements a I’étude.
Pour chaque mouvement, une acquisition sur 60 secondes suivant le rythme d’un métronome a
S0BPM soit 0.83 Hz a ét¢ effectuée suivie d’une pause de 10s. La pause de 10s est observée pour
¢viter les fatigues musculaires. Ce protocole a été inspiré des travaux de [82]qui ont établi une base

de données de référence comptant 52 mouvements des doigts, des mains et des poignets.

L’acquisition a été répétée deux fois pour chaque mouvement. Les données ont été échantillonnées
aune fréquence de 100 Hz. La fréquence de 100 Hz a été choisie pour limiter la quantité de données
a traiter. La fréquence des mouvements humains est de 0-20 Hz [83]; de ce fait le théoréme de
Shannon Nyquist a été respecté. A la fin de cette étape, un fichier « .zxt » a été généré pour chaque

mouvement effectué pour chaque sujet.

4.3.5 Traitement des signaux

Différentes étapes de traitement ont été appliquées aux signaux afin de pouvoir les utiliser avec les

algorithmes de classification.

Filtration et amplification : Un filtre passe-bas numérique de type Butterworth d'ordre 4 avec une
fréquence de coupure de 1 Hz a été utilisé pour filtrer le signal des jauges de déformation. Les cent
premicres données de chaque jauge ont été moyennées et utilisées pour définir un décalage pour
les données suivantes. Un gain digital de 10,000 a été appliqué a ces signaux pour permettre de
mieux les analyser visuellement. Les signaux bruts provenant des centrales inertielles ont été

utilisés pour réduire les calculs effectués par le microcontrdleur.

Etiquetage : Une procédure d’étiquetage a été utilisée pour attribuer a chaque portion de signal
une classe correspondante. Cette méthode est considérée comme de I’apprentissage supervisé
« supervised learning », car les classes sont attribuées par un agent externe contrairement aux

techniques non supervisées « unsupervised learning », qui utilisent des techniques de
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« clustering ». Cette étape est cruciale pour la classification, car la présence d’exemples
mal étiquetés dans les données d’apprentissage peut entrainer de mauvais résultats. L’étiquetage
s’est fait a I’aide de 1’outil « Signal Labeler » de Matlab. Un exemple d’étiquetage est montré a la

Figure 4.17 pour le mouvement d’extension du poignet.

W data_labeler(:,1) ™ data_labeler(:,2) M data_labeler(:,3) M data_labeler(:,4) W™ data_labeler(:,5) M data_labeler(.,6) M data_labeler(:,7) M data_labeler(:,8) ™ data_labeler(:,9)
M data_labeler(:,10) M data_labeler(:,11) M data_labeler(:,12) M data_labeler(:,13) M data_labeler(:,14) M data_labeler(:,15) W data_labeler(:,16) M data_labeler(:,17)
W data_labeler(:,18) ™ data_labeler(:,19) M data_labeler(:,20) W data_labeler(:,21) M data_labeler(:,22) M data_labeler(:,23) M data_labeler(: 24)

WE WE WE WE WE WE WE WE WE WE WE WE WE WE WE WE WE WE WE WE WE WE WE WE WE
01 02 03 04 05 06 07 08 09 10 11 12

Time (minutes)

WE WE WE Wi W\ N NI Wi A NE NE NE WE WE WE WE WE WE WE WE WE WE M WE |

Figure 4.17 Etiquetage des signaux pour le mouvement d'extension du poignet pour un des sujets.
A la fin de cette étape, un fichier «. mat » par mouvement a été généré. Dans chaque fichier, une
classe de mouvement a été attribuée a un intervalle de temps précis.

4.4 Traitement des données

Le traitement des données a pour but de structurer les données pour qu’elles soient utilisables par

les algorithmes d’apprentissage profond.

Aprées I’obtention du fichier « .mat », section 4.3.5, les étapes suivantes de traitement de données

ont été présentées:

1. Utilisation du fichier « .mat » pour créer un fichier « .txt » avec 25 colonnes. Les 24
premicres colonnes représentent les signaux provenant des capteurs. La 25° colonne

représente la classe attribuée a chaque point de données.

2. Mise en commun des fichiers par mouvement pour tous les sujets. Par exemple, le fichier
« EF.txt » regroupait tous les mouvements de la flexion du coude de tous les sujets. Pour
finir, 10 fichiers correspondant a chacun des mouvements ont été obtenus. Le choix de
combiner les données de tous les sujets a été effectu¢ a cause du nombre insuffisant de

données par individu pour entrainer des algorithmes de classification.
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3. Segmentation des données avec une fenétre de 250 ms et 50 ms de chevauchement entre
les fenétres. Bien que des intervalles plus grands ont plus d'informations et que la typicité
améliore la sortie de classification, il a été démontré que les fenétres doivent étre inférieures

a 300 ms afin que l'utilisateur ne subisse pas de retards de contrdle [26].

Apres avoir effectué ces opérations une matrice 3 dimensions a été obtenu pour chacun des

mouvements. La Figure 5.18 présente la forme de la matrice qui a été obtenue.

24 canaux

A

I o8  Bracelet(2) Bracelet(1) IMU(1) IMU(2)
I 6 canaux 6 canaux 6 canaux
—-‘T--TJ
I —

| == | o v | [ T .1 [ T |
n données sur AB6
250 ms
- - . - - - - - - . - ; NM

EE

Figure 4.18 Représentation des dimensions de la matrice obtenue apres le traitement des données.
Suivant les colonnes, les données provenant des capteurs (24 signaux). Suivant les lignes le
nombre de données correspondant a 250 ms d’acquisition. La profondeur représente le nombre de
fenétres de 250ms x 25 canaux.

Une seconde opération a consisté a séparer les données provenant des capteurs et les classes. Pour
chaque fenétre de données, une classe résultante est associée, Figure 4.19. Cette classe est obtenue
en faisant la moyenne des classes des échantillons de la fenétre. Lorsqu’une classe a une moyenne

supérieure a 95% alors elle est attribuée a la fenétre.
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Figure 4.19 Séparation des données provenant des capteurs et des classes associés aux fenétres

Ainsi, pour les données des capteurs la structure suivante est obtenue :

D = (nombre de fenétres (f),nombre de pas de temps (n), nombres de paramétres)
Et pour les classes on obtient un vecteur :
C = [NM,EE,EF, ...] dont le nombre d’¢léments correspond au nombre de fenétres f
Les composants de la matrice D sont :

o Nombres de parametres: le nombre de signaux utilisés. Ici 24 signaux provenant des
capteurs ont été utilisés soit 12 signaux provenant des centrales inertielles et 12 signaux

provenant des jauges de déformation.
e Nombre de pas de temps(n): le nombre de données par fenétre. Ici ce nombre est de 25.

e Nombre de fenétres(f) : le nombre de fenétres de 250 ms pouvant étre extraite par

mouvement.

La Figure 4.20 présente le nombre de fenétres ayant une dimension de 25 données (250 ms a

100Hz) et 24 paramétres pour chacun des mouvements.
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Figure 4.20 Répartition des données par classe de mouvement

4. La dernicre étape a consisté a séparer les données en ensembles d’entrainement, de
validation et de tests. Ainsi pour chaque mouvement, 70% des données ont été utilisées
pour I’entrainement, 15% pour la validation et 15% pour le test. Les éléments appartenant

a chacun de ces ensembles ont ét¢ choisis de fagon aléatoire.

4.5 Logiciels et matériels

Une fois les données structurées de maniere appropriée, elles ont été importées dans le programme
développé en Python pour étre utilisées par 1’algorithme d'apprentissage profond. Cela a été
implémenté dans un environnement virtuel créé a I'aide d'Anaconda qui est une distribution libre
et Open Source. L’éditeur de code Visual Studio Code (VScode) a été utilisé. Python a été choisi
en raison de sa simplicité ainsi que de sa compatibilité avec plusieurs bibliothéques Open Source
congues pour le développement et 1’entrainement de mod¢eles d’apprentissage machine, tel que
Pytorch, Theano, et Tensorflow. La bibliothéque Keras est une interface de programmation

d’application (API) intuitive et bien documentée. Elle fournit une méthode simple de haut niveau
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de programmation de réseaux de neurones. Par conséquent, Keras est un choix idéal pour une

implémentation de haut niveau de réseaux complexes, tels que les CNN et les LSTM.

Le processus d’entrainement des réseaux de neurones profonds requiert trés souvent une puissance
de calcul élevée. Il faut donc s’assurer d’avoir un équipement adéquat. Le systéme utilisé pour les
expériences était un ordinateur basé sur Windows 64 bits, processeur Intel® Core™ i7, avec une
mémoire RAM de 16 GO et une carte graphique GTX1060 avec 4 GO de mémoire dédiées
compatibles avec CUDA de NVIDIA. Dans les résultats, le temps d'exécution pour les différents

réseaux a été indiqué, car il dépend fortement des performances de I’ordinateur.

4.6 Expériences

La dernicre étape avant I’entrainement des réseaux de neurones a consisté a balancer le nombre
d’échantillons dans chacune des classes au sein de ’ensemble des données. En effet, la Figure 5.20
montre que les classes présentent de grandes disparités. La classe correspond au mouvement de
repos (NM) contenait le plus grand nombre d’échantillons (4593). La classe correspondant au
mouvement de préhension (PG) avec 676 échantillons contenait le plus petit nombre
d’échantillons. Dans la section 2.6, I’importance d’avoir des classes balancées a été démontrée. A
cette fin, avant chaque exécution, les fenétres classées comme étant des mouvements de repos ont
¢té supprimeées aléatoirement des ensembles de données. De plus, hormis le mouvement de repos,
les autres classes de mouvement ont également été soumises a une suppression aléatoire d'un
certain nombre de fenétres afin que toutes les classes de mouvement contiennent exactement le
méme nombre d'exemples que le mouvement le moins représenté. Pour améliorer l'entrainement,

les exemples ont €galement été choisis aléatoirement, avant chaque exécution.

Aussi, comme décrit dans la section 2.4.1, les classes cibles ont été encodées selon le format « one

hot » représenté a la Figure 4.21.
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m m Encodage « one hot » des classes

NM 0 100000 0O0TUO0O
EE 1 01 0000UO0GO0TU OO
EF 2 001 0000O0TO0SO
FP 3 0001 000O0TCO0STUO
s | = 4 = 00001000 O0O0
WE 5 0 000 010O0UO0TUO
WE 6 0000001000
WR 7 000 0O0OOT1OQ0O0
wL 8 00 0 o 0 10
PG 9 (] 0 0 0 1

Figure 4.21 Encodage « one hot » pour la classification multiclasse

Deux architectures différentes ont été testées sur I’ensemble de données. La premicre consiste a
utiliser un LSTM et la seconde consiste a ajouter un CNN avant les couches LSTM pour former
un CNN-LSTM. Une fois que la comparaison a ¢été effectuée entre ces architectures, celle qui
fournissait le meilleur résultat a été optimisée en recherchant I'espace des hyperparameétres.
Lorsqu’un espace d’hyperparametres permettant d’avoir de bons résultats de classification,

I’impact des données inertielles sur le résultat de classification a été étudié.

4.6.1 Comparaison des modéles

Les deux architectures qui ont été¢ comparées sont le modele LSTM et le modele CNN-LSTM. La
motivation pour 1’utilisation de ces mod¢les a été décrite dans la section 2.1.2. Le modele (LSTM)
a été utilisée pour l'apprentissage des caractéristiques temporelles des signaux. La couche de
convolution quant a elle a été responsable de 1'extraction des caractéristiques et de la réduction de
la dimensionnalité des données. Pour comparer les deux architectures, le modele LSTM présenté
sur la Figure 4.22 a d’abord été¢ développé et les hyperparametres ont été définis en effectuant

différents tests. Par la suite, une couche de convolution 1D et une opération de « max pooling »
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comme décrite dans la section 2.3.3 ont été rajoutées au modele LSTM précédemment développé,

Figure 4.23.

{ ) Sortie 10 classes
(Softmax)
Entrée Couche dense

séquentielle
[Nx25x24] avec 18 neurones
Couche LSTM avec Couche LSTM avec 2 =0.002
32 neurones et un 32 neurones et un (ReLu)
dropout de 0.2 dropout de 0.2

Figure 4.22 Modele LSTM. L'entrée est transmise a deux couches LSTM comptant chacune 32
neurones. Un dropout de 0.2 a également été appliqué a ces couches. A la fin du réseau, il y a un
perceptron multicouche qui se terminer avec deux couches. Une couche dense comptant 18
neurones et un terme de régularisation A = 0.002. Une de sortie avec une fonction d’activation
softmax et 10 neurones, une pour chaque classe de mouvement.
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Figure 4.23 Modele CNN-LSTM. Ce modele a été obtenu en rajoutant un réseau de neurones de
convolutif juste avant le modéle LSTM présenté a la Figure 4.16. L’entrée est d'abord transmise a
une couche convolutive 1D avec 32 filtres de dimension [1x5] et un pas de 1. La fonction ReLu a

été utilisée comme fonction d’activation. La couche convolutive est suivie par une couche de
mise en commun « max pooling ». Les vecteurs de caractéristiques extraits par ceux-ci seront
alors transmis au réseau de neurones récurrents.

4.6.2 Recherche d’hyperparamétres

Dans le processus de développement des algorithmes d’apprentissage profond, il est commun
d’effectuer une recherche d’hyperparametres pour améliorer les performances de I’algorithme
meéme apres avoir trouvé une architecture fonctionnelle. Il existe différentes stratégies de recherche
d’hyperparametres. La plus répandue est une recherche sur grille ou plusieurs combinaisons de

parametres sont testées et les résultats comparés.

Cependant, ces différentes stratégies sortent du cadre de ce travail de maitrise. Ainsi, dans cette
¢tude le processus de recherche d’hyperparametres a consisté a tester de maniere séquentielle cing
valeurs de chaque hyperparamétre en gardant a chaque fois la valeur de I’hyperparameétre qui a
donné le meilleur taux de classification pour les essais subséquents. Cela a permis d’avoir une

référence pour des études futures.
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4.6.3 Effet des données cinématiques

Apres avoir déterminé le modele qui performe le mieux, la quantification de I’apport des données
cinématiques sur les résultats de classifications a été entreprise. Pour ce faire, les données reliées
aux centrales inertielles ont été retirées des données de 1I’ensemble d’entrainement, de validation et
de test. Ainsi, une base de données contenant uniquement les données des jauges de déformations
a été utilisée pour effectuer I’entrainement du modéle d’apprentissage profond. La nouvelle matrice
de données est présentée a la Figure 4.24. Les résultats de classifications ont été comparés aux

résultats obtenus avec le modele qui a utilisé I’ensemble des données.

12 canaux

n données sur
250 ms
%, 7o,
"’(a»
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%,:56 n n A AN A N A A AN N N N
"o,oﬁ-,h‘
v Y

Figure 4.24 Représentation des dimensions de la matrice obtenue apres la suppression des

données inertielles. Suivant les colonnes, les données provenant des bracelets de jauges de

déformation (12 signaux). Suivant les lignes le nombre de données correspondant a 250 ms
d’acquisition soit 25. La profondeur représente le nombre de fenétres de 250 ms x 12 canaux.
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CHAPITRES ARTICLE 1: DEVELOPMENT OF A WEARABLE
SYSTEM TO IDENTIFY MOVEMENT INTENTIONS BY COMBINING
STRAIN GAUGES AND INERTIAL MEASUREMENT UNITS

Cet article a été soumis le 14 novembre 2021 dans la revue IEEE Sensors Journal. Les auteurs de

I’article sont Steve Regis Koalaga, Maxime Raison et Sofiane Achiche.

5.1 Abstract

The combination between surface Flat Flexible Cable connector

Flexible Printed
Kinesiological tape Circuit Board

i
:

placed on skin sites, and require a high sampling frequency, usually 1000 Hz, which technically

electromyography sensors and inertial

measurement units is the most common

Strain
gauge

multimodal sensing method used in body
area  networks.  Nowadays, this

combination is frequently used to

identify the intentions of movement in
humans, e.g. to control their prosthesis.

However, the surface electromyography

sensors are usually bulky, with electrodes

highly reduces the number of sensors that can be used simultaneously by an onboard
microprocessor. Further, the electromyographic measurement suffers from crosstalk due to
muscles packed side by side. These limitations in electromyography motivate the search for
alternatives using multiple sensors capable of operating at lower frequencies for everyday
applications at an affordable cost. The objective of this study is to develop a novel wearable system
to identify intentions of movement by combining strain gauges and inertial measurement units. The
system is composed of 1. two bracelets using six strain gauges each, connected to a flexible printed
circuit board and 2. two inertial measurement units. Physiologically, the strain gauges measure the
skin deformation due to muscle contraction, while the inertial measurement units provide
complementary data on joint kinematics. The system was tested at the upper limb, and successfully

identified 9 main movements based on the signal intensity of strain gauges. These results show the
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great potential of such a sensory system to become a smart wearable sensory system to detect

human movement intention.

5.2 Index Terms

strain gauges, IMUs, sensor fusion, movement intention, kinesiological tape.
5.3 Introduction

5.3.1 On the combination of SEMG-IMU to identify movement intention:

context and physiological justification

The combination between surface electromyography (SEMG) sensors and inertial measurement
units (IMU) is the most common used multimodal sensing method in body area networks [1].
Nowadays, this combination is frequently utilized to identify the intention of movement in humans,
e.g. for hand and finger gesture recognition [2], or to classify upper limb phantom movements in
transhumeral amputees to control their prosthesis (e.g. [3], [4]). And the methods for identification
of the intention of movement based on SEMG and IMU have the potential to be extended to daily
general applications, such as human computer interfacing [5], [6], teleoperation of industrial robots

[7], etc.

The combination between sEMG and IMU can be physiologically justified as a potentially

successful avenue, because:

1) sEMG enable to detect the intention of movement, by measuring the muscle activity.

Therefore, SEMG is still the main sensor used to control myoelectric prostheses.

2) IMUs provide additional kinematics information about the motion, i.e., articulation

configurations, velocities, and accelerations. IMUs fills two limitations of sSEMG:



67

¢ SEMG commonly suffers from the limb position effect, where SEMG signals for the
same motion are different in different limb positions [8], [9]. Therefore, IMUs can be

complementary. !

e [MUs are particularly good for capturing larger motions, while SEMG data are better at

distinguishing different hand shapes and finger movements [2].

Adding kinematics features enabled to increase the accuracy of the movement classification by
4.8% [3] on human upper limb movements. Furthermore, Geng et al. [10] and Fougner et al. [11]
presented a classifier in cascades, which reduced the average movement classification error from
18% to 5.7%. This classifier used accelerometry to determine the best limb position before

choosing the sSEMG classifier [11].

5.3.2 Limitations of sSEMG and search for alternative solutions

sEMG is a technique that uses electrodes placed on the skin at a specific location to monitor muscle
contractions [12]. There are several drawbacks to using sSEMG [12], [13]. SEMG can often be
unstable due to sweat, electrode shifts, motion artifacts, and electronic noise [12], [14]. Also,
crosstalk can occur due to the high number of muscles packed side by side, and muscular fatigue
can crucially affect the quality of the signals [12], [14]. Further, the amount of data coming from
sEMG, due to the acquisitions generally at 1000 Hz, requires high computing power to process it

in real time [15]. Hence, researchers need to pay attention to these critical issues.
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Different sensors have been proposed as alternative solutions to using SEMG. Indeed, the growing
interest in smart wearable technologies requires the development of new sensors at low cost, with
high sensitivity and low detection limit [16]. Liang Zou ef al. [17] grouped together all tactile
sensing systems in four groups, which are capacitive, piezoresistive, piezoelectric and tactile
optical sensors. The tactile sensing systems are mostly used in robotics and biomedical engineering.
A more detailed work done by [18], introduced sensor skins defined to be stretchable planar
structures with embedded sensing components. Sensor skin found in the literature can be grouped
by the type of material (elastomers, woven fabric), the type of conductor (thin metal films, liquid
metal), and the structure they use (microchannels, mechanical flexible interfaces). Chang et al. [19]
proposed a strain sensor that can still form conformal contact to the skin even during body
movements. They are prepared by solution coating and consist of two layers, a dry adhesive layer
of biocompatible water-based elastomeric polyurethane, and a detection layer of a non-adhesive
composite of reduced graphene oxide and carbon nanotubes. The adhesive layer makes the sensors
conform to the skin, while the sensing layer has sensitive resistance to deformations. Song et al.
[20] presented a strain sensor based on silk graphene spandex coated fabric (GCSS) prepared by
reducing graphene oxide. The sensor worked thanks to the extension of the conductive fiber and
the deformation of the woven structure. GCSS was successfully used to detect human movement,
by providing data for gesture recognition based on deep learning. Yao et al. [21] described the
application of capacitive strain sensors based on silver nanowires for kinematic finger tracking.
The sensors can be attached to the skin to track the movement of the finger joints with minimal
interference with daily activities. Ali et al. [22], presented a new goniometric glove using flex
sensors to capture the user hand gesture that can be used to wirelessly control a bionic hand.
However, many of these sensors used a complex fabrication procedure and/or special materials
graphene spandex coated fabric, liquid gallium, etc. [17], [18], and were limited to finger
movements tracking [19], [20], hence reducing the number of upper limb movements that could be

detected in real applications.

5.3.3 Strain gauges as the promising solution

Mori et al. [23] presented a new bioinstrumentation sensor using one strain gauge for upper limb
amputees. Their work concluded that the repeatability of the strain gauge signal is superior to

myoelectric signal because the sensor measures the deformation of the skin [23].
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Finally, Zizoua et al. [15] presented a proof of concept of a bracelet using strain gauges for the

identification of four upper limb movements in traumatic amputees: elbow flexion/extension and

forearm pronation/supination. Strain gauges can measure small deformation of about 10-13pum and

are widely used for their low cost and simple signal conditioning [15].

Therefore, Zizoua et al. [15] could be a starting reference as an alternative to EMGs, but this system

cannot be used as proposed to identify three-dimensional movements, because of four major

limitations:

1)

2)

3)

4)

5.3.4

Uniaxial skin deformations: the gauges were placed only in the longitudinal direction of

the biceps brachii muscle, which does not enable to record multi-axial skin deformations.

Fragility: the strain gauges were connected by two thin wires. This enabled a first proof of

concept but was not viable as it either broke or unsoldered when used several times [15].

Non-portability: the system was neither compact nor portable, which limits its application

in everyday life.

Lack of conform contact to skin during movement: the strain gauges were embedded in
silicone that did not provide a direct contact with the skin, thus limiting the ability of the

system to measure the actual skin deformation.

Problem, objective, and research hypotheses

Here above, the state-of-art survey revealed two major problems:

1.

The common issues with SEMG were solved by a first proof of concept of bracelet using
strain gauges. But this one still had limitations: uniaxial skin deformations, fragility,

inaccuracy, and non-portability.

The combination between strain gauges and IMUs has never been investigated to detect

human motion intention.

Consequently, the objective of this study is to develop a wearable system to identify intentions of

movement by combining strain gauges and inertial measurement units.

The main design requirements (DR) of this system are as follows:

DR 1: The system must be able to measure multi-axial skin deformations.
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DR 2: The system must be able to be used several times in daily three-dimensional movements.
DR 3: The system must be wearable.

The following research hypothesis (RH) to study can be formulated: “The combination between

strain gauges and IMUs could enhance the ability to detect motion intention”.

5.4 Methods

The muscle contractions during a movement create a deformation of the skin at the surface. Hence,
identifying the muscles involved in the upper limb movement can help to determine the best sites

to measure skin deformations and to design the strain gauge bracelet accordingly.

5.4.1 Design of a strain gauge bracelet

The strain gauge bracelet consisted of six equally spaced (3.5 cm) strain gauges. These gauges
were connected by a 0.1 mm thick flexible printed circuit board (PCB) (see Fig. 5.1 (a)). In this
flexible PCB, the strain gauges with odd numbers (1, 3 and 5) were aligned parallel to the
longitudinal direction of the biceps brachii, and the strain gauges with even numbers (2, 4, and 6)
were aligned perpendicularly to the longitudinal direction of the biceps brachii. This configuration

enables the recording of the skin deformations along two different axes.

The gauges were also capable of bending in two directions providing positive (convex deformation)

or negative (concave deformation) voltage variations.

The flexible PCB had a 12-position flat flexible connector (FFC). This connector was used to
connect the strain gauge bracelet to the acquisition board. The flexible PCB provided a solid

connection with the strain gauges.

Different tests were performed with different types and sizes of strain gauges. The tests consisted
in applying a deformation to the strain gauges and measuring the signal intensity. The gauge with
the best linear response and high intensity was selected, namely the CF120-10AA. The gauge had
a linear pattern and a nominal resistance of 120 ohm =+ 1% with a gage factor of 2+ 1%. The gauge
was made of constantan alloy and had a sensitive grid of 10.0 x 4.0 mm. It was able to measure

small strains of about + 5% of the neutral length which was adequate for our application.
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For a better measurement of skin deformation, the gauges, previously soldered on the flexible PCB,

were placed directly on a kinesiological tape (see Fig. 5.1 (b)).

Figure 5.1 Strain gauge bracelet. (a) Flexible PCB (yellow) with the connections
for 6 strain gauges. (b) Instrumented kinesiological tape (blue) the flexible PCB
(yellow) connected to the 6 numbered strain gauges (orange rectangles).

The kinesiological tape was designed to mimic the skin elasticity so the users can use their full
range of motion [24]. The tape used a medical-grade adhesive, which was water-resistant and
strong enough to stay on for several days even, while working out or taking showers [25].
Kinesiological tapes are known as therapeutic tapes that are stretched and, strategically applied to
the body to provide support, lessen pain, reduce swelling, and improve performance [26]. A
therapist can let you know how much stretch is needed for your treatment. In this study, no stretch
was applied to the kinesiological tape, as it was only used as a bonding interface between the strain

gauges matrix and the skin. This configuration provided better contact with the skin.

5.4.2 Muscles Involved in Upper Limb Movement

As a proof of concept, one healthy adult subject (male, age: 25 years old, size: 1m70) participated
to this study. The experimental procedure was approved by the Ethic Board of the Research Center
of Ste-Justine University Hospital Center, in Montreal, Canada. The participant provided informed

consent before the experiment and declared being in a good health.

Fig. 5.2 shows the placement of two bracelets, totalizing 12 strain gauges:
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1. Strain gauge bracelet labeled B placed around the arm at the biceps brachii prominence.

2. Strain gauge bracelet labeled 4B placed around the forearm 5 cm below the elbow joint

center; on the forearm and arm.

In this paper, a strain gauge on a bracelet is identified by the label of the bracelet, i.e., B or AB,
followed by the gauge number from 1 to 6 shown in Fig. 5.1 (b). e.g.: The gauge B6 referrers to

strain gauge number 6 on bracelet B.

Biceps brachii

Brachialis
Extensor carpi

radialis longus

Extensor carpi
radialis brevis

Pronator teres

Brachioradialis Extensor
Flexor carpi radialis carpi ulnaris

Flexor carpi ulnaris Extensor
Flexor digitorum superficialis  djigitorum

Pronator quadratus

Figure 5.2 (a) Placement of the two strain gauge bracelets: bracelet B around the arm, and
bracelet AB placed around the forearm; two IMUS: IMU (1) placed on the hand; IMU (2) placed
on the forearm. (b) Anterior view of the human upper limb. (¢) Posterior view of the human
upper limb. The image (b) and (c) were adapted from [27].

In this study, 10 movements of the upper limb (Fig. 5.3) were selected. Table 5.1 identifies the
muscles involved in each movement and the main sensors that were positioned to capture the

movements.

The biceps brachii, brachialis, and brachioradialis muscles are responsible for flexing the forearm.
The triceps brachii and anconeus muscles are responsible for extending the forearm. The gauge
B6 was placed on the center on the biceps brachii of the right arm, and the other gauges of strain
gauge bracelet B were placed going round the arm (X-axis of Fig. 5.2) following the positive

direction of the right-hand rule (B6, B5, B4, B3, B2, Bl).
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A supinator is the muscle responsible for rotating the forearm so that the palm is facing up or
forward. A pronator is the muscle that rotates the arm so that the palm is facing down or toward
the back. The extrinsic muscles of the forearm allow movement of the wrist and hand. The muscles

of the posterior group extend the hand to the level of the wrist; the muscles of the anterior group

-\
R\

(10)

flex the hand at the wrist.

—~

9)

Figure 5.3 The 10 identified movements. (1) Elbow Flexion (EF). (2) Elbow Extension (EE). (3)
Forearm Pronation (FP). (4) Forearm Supination (FS). (5) Wrist Flexion (WF). (6) Wrist
Extension (WE). (7) Wrist Ulnar Deviation (WL). (8) Wrist Radial Deviation (WR). (9) Power
grips (PG). (10). Rest position “no movement” (NM).



74

Tableau 5.1 Muscles involved in identified upper limb movements

Main muscles involved

Main sensors

Hand

@ -Biceps brachii
& EF -strain gauge bracelet (B)
% -Triceps brachii
é -IMU (2)
- -Triceps brachii
g EE
0 -Biceps brachii
= -Pronator teres
g FP
% -Pronator quadratus -strain gauge bracelet (AB)
=
g -Supinator -IMU (1)
s FS
E -Pronator Teres
-Flexor carpi radialis
WF
-Flexor carpi ulnaris
-Extensor carpi radialis longus
wn
é WE  -Extensor carpi radialis brevis  _strain gauge bracelet (AB)
é -Extensor digitorum -IMU (1)
@
=
= WL -Extensor carpi ulnaris
-Abducto Polilicis longus
WR
-Flexor carpi radialis
PG - extrinsic muscles of hand -strain gauge bracelet (AB)
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The gauge AB6 was vertically aligned with B6, and the other gauges of strain gauge bracelet AB
were placed going round the forearm (X-axis of Fig. 5.2) following the positive direction of the

right-hand rule (4B6, ABS5, AB4, AB3, AB2, ABI). The letters AB were used to identify this bracelet

5.5 Circuits and systems

For each stain gauge bracelet, six analog channels were necessary to record the deformation of the
six strain gauges in real time. For inertial unit-based sensors, six signals were acquired, namely

three linear accelerations and three angular velocities. All sensors had wireless communication.

5.5.1 Microcontroller

As presented in Fig. 5.4, the microcontroller was an ESP32 (Espressif Systems, China). It has a
built-in USB-to-serial converter, a lithium ion/polymer charger, and general purpose input/output
(GPIO). It contains a universal asynchronous receiver-transmitter (UART), a serial peripheral
interface (SPI), and inter-integrated circuit (I2C) as a communication bus. 12C is a serial protocol
having a two-wire interface for connecting low speed devices. The UART protocol was used to
establish a communication between the microcontroller and the computer. On the computer, Matlab
was run to save and visualize the incoming data. The ESP32 has a 240 MHz dual core processor
and an integrated 520 KB SRAM that can perform the calculations with a large number of
operations for onboard real-time movement identification. The 12C protocol was used to connect

the microcontroller to the BNOQ055 IMU.

The ESP32 supports both WiFi and Bluetooth (Classic/LE), meaning that it is suitable to user for
wireless projects. It comes with a proprietary communication protocol ESP-NOW, which enables
a 2-way wireless communication between several ESP32 boards. This protocol was used as it is

easy to implement, and the transmissions frequency (>100Hz) is fast enough for our application.

5.5.2 IMU sensor design

As presented in Fig. 5.4, the system used the low-cost commercial Bosh Sensortec BNO055 IMU
(Adafruit, USA) including a tridimensional (3D) accelerometer, a (3D) gyroscope, and a
magnetometer. The work done by [28] motivated the choice of this sensor. Fig. 5.4 shows the

wiring diagram.



76

#enSB13 12 11 10 _9_6 5 SCLSDA
ofefefefofofode]

6

Figure 5.4 IMU circuit. BNO055 IMU (left) connected to the ESP32 microcontroller (right) using
the 12C protocol. The BNOO0S55 IMU has a 3,3V input that was connected directly into the ESP32
3,3V output (red wire). A ground (GND) pin was connected to GND on the ESP32 (black wire),
the I2C clock pin (SCL) was connected to the corresponding ESP32 pin 22 (yellow wire), and the
12C data pin (SDA) was connected to the corresponding ESP32 pin 23 (blue wire). The image
was adapted from [29].

The BNOO055 IMU was connected to the ESP32 microcontroller by using an I2C protocol (Fig.
5.4). Two IMU sensors, namely IMU 1 and 2, were implemented by following this way.

The code for data acquisition was implemented by following the protocol provided by Adafruit
[29], briefly: for each sensor, a BNOOS55 object was initialized; each sensor provided linear
accelerations and angular velocities along the 3 Cartesian axes; a specific identifier was assigned

to each sensor to identify the origin of the data following the ESP-NOW protocol [30].

To ensure that the data coming from the two BNOO055 IMU were accurate, it was essential to
calibrate these ones. The calibration was performed according to the calibration guide provided by
MathWorks [31]. When the calibration process was completed, the code provided offset values.
These offset values were then applied to each 3D axis of the two BNO055 IMU.

3D printed PLA boxes were used to hold the PCB for strain gauge signal conditioning (Fig. 5.5
(b)), and each IMU (Fig. 5.5 (b), and Fig. 5.2 (a) when strapped with a Velcro on the participant).
The ESP32 has support for connecting a LiPoly/Lion battery. This terminal was connected to a
Lipo 850 mAh battery (Adafruit, USA) that allowed the system to have an autonomy of 8 hours.
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Figure 5.5 3D printed box for electronics. (a) Box (12x10x3.3 cm) containing the PCB for strain
gauge signal conditioning. (b) Box (5.5x3.5x2.2 cm) containing the IMU circuit and a Velcro
strap.

5.5.3 Strain gauge-based sensor

To record and treat the signal from the strain gauges, a PCB representing the electrical circuit (Fig.

5.6) was designed (see Fig. 5.7).

Ve -
Pot E .
|3 Mux |
= 16x1 =
R R = E
GND . -
% TIT3
vlll -
Pot E
— {3 MUX ||
=19 16x1
R R =
EET)
.

Figure 5.6 Electrical circuit for strain gauge signal conditioning showing the Wheatstone bridges
in quarter bridge configuration, the multiplexers, the ADS1256 and the ESP32 microcontroller.
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The PCB had a flat flexible cable connector for connecting the strain gauge bracelet. The PCB
included six Wheatstone bridges in quarter bridge configuration. The strain gauge CF120-10AA
had a resistance variation from 115 Ohms to 125 Ohms. The bridges converted small changes in
resistance (= 5 Ohms) of the gauges to a voltage. The resistors of this circuit had a nominal
resistance value of 120 Ohm with a tolerance of + 1%. Each bridge had a trimmer potentiometer
whose resistance rating is 500 Ohms. This selected potentiometer had 20 turns allowing to have
good precision of + 10hm which facilitated the bridge zeroing. The zeroing results to a zero-
voltage output when no-strain is applied to the gauge. It is an important step to perform before

using the system.

The signals from the gauges were then routed to two multiplexers. The multiplexers allow to choose
the channel to be read by sequentially reading each of the analog inputs, as suggested by [15]. The
selected CD74HC4067 multiplexer has sixteen channels controlled by 4 digital signals. The data
from sixteen strain gauges can be acquired using only one input of a microcontroller. This system
also allowed the use of a single amplifier and an analog-to-digital converter. The size of the
acquisition system was thus reduced. It also saved equipment costs by using a single amplifier for

several gauges.

SG-BOARD
REF:S2

Figure 5.7 PCB for strain gauge signal acquisition. (a) ESP32. (b) FFC/FPC connector. (¢)
Wheatstone Bridge. (d) Multiplexers. (¢) Power management. (f) ADS1256.
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These analog signals were acquired and processed by the ADS1256. The ADS1256 is a low-noise
24-bit analog-to-digital converter. It has a high acquisition frequency of 30 kSPS and can acquire
data from 8 asymmetric inputs or 4 differential inputs. The programming of this goes through the
ESP32 with SPI communication. The ESP32 microcontroller then retrieves the data from the
ADSI1256 in 24-bit digital format. It sends them to the computer by UART communication.
Additionally, a 3,3 V voltage regulator has been added to provide a stable voltage source for the
Wheatstone’s bridges. The stability of the voltage source is important to ensure the stability of
Wheatstone’s bridges.

This acquisition board was powered by a LiPo (Lithium Polymer) battery (Adafruit, USA) with a
capacity of 5000 mAh at 3,7 V and a power of 18.5 W. This battery allowed the acquisition system
an autonomy of 24 hours. A 3D printed PLA box was used to hold all electronic devices (see Fig.

5.5(a)).

5.5.4 Signal Acquisition

The sensors used wireless communication based on the ESP-NOW protocol which enables multiple
devices to communicate without using Wi-Fi. The communication architecture is presented in Fig.

5.8.

A total of 12 signals from the strain gauges were recorded for each movement. Additionally, to
these signals, the tridimensional linear accelerations and angular velocities coming from two IMUs
were used. Combining the signals from the strain gauges and inertial units, a total of 24 signals
were obtained. The data were sampled at a frequency of 100 Hz. This frequency was chosen to
limit the amount of data to be processed. The human movement frequency is contained between 0
and 20 Hz [32]; hence the Shannon Nyquist sampling theorem was respected. A Butterworth-type
digital low-pass filter of order 4 with a cut-off frequency of 1 Hz [15] was used to filter the signal
from the strain gauges. The first hundred data for each gauge when the participant is at rest was

averaged and used to set an offset for the following data. The raw signals from IMUs were used.
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Figure 5.8 Communication architecture including the ESP32 microcontroller, the two strain
gauge bracelets B and 4B, the two IMUs 1 and 2, the communication protocols ESP-NOW
(between the ESP32 and the bracelets and IMUs) and UART (between the ESP32 and the
computer), and the variables corresponding to the sensors output: e.g. ABI to AB6 for the strain
gauge bracelet AB, BI to B6 for the strain gauge bracelet B. ax for linear acceleration following
X-axis, ay for linear acceleration following Y -axis, az for linear acceleration following Z-axis. gx
for angular velocity around the X-axis, gy for angular velocity around Y -axis, gz for angular
velocity around Z-axis The number 1 or 2 referred to IMU 1 or IMU 2.

5.6 Results

To analyze the ability of this system to identify movement intentions, a series of movements was
performed. The sequence was as follows EF-NM-EE-NM-FP-NM-FS-NM-WF-NM-WE-NM-WL-
NM-WR-NM-PG-NM. After each movement, a pause with “no movement” (NM) was observed

before doing the next movement.

Fig. 5.9 shows the data acquired during the sequence of movements performed by the participant.
Fig. 5.9 (a) shows the 3 linear accelerations and 3 angular velocities coming from IMU 1 which
was placed on the hand. Fig. 459 (b) shows the 3 linear accelerations and 3 angular velocities
coming from IMU 2 which was placed on the forearm. Fig. 5.9 (c) shows the data acquired by the
strain gauge bracelet placed on the arm. Fig. 5.9 (d) shows the data acquired by the strain gauge

bracelet placed on the forearm.
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In Table 5.2, the maximum voltage variation for each strain gauge was computed per movement.

The strain gauges that recorded a voltage variation (AV) superior to +£1 mV were identified. This

threshold was established to compensate the error introduced by the manual zeroing of the

Wheatstone bridge.

Furthermore, using the information presented in Table 5.2 the maximum AV in both bending

directions were computed per column to determine which strain gauges recorded more skin

deformation for a particular movement, and per row to determine which movement produced the

maximum AV for each gauge. The results showing the strain gauge signal intensity pattern are

displayed in Table 5.3.

1)

2)

3)

Elbow Flexion (EF): The largest deformations were recorded by the strain gauges B6, AB6
and ABI, with 4.5 mV, 6.03 mV, and 4.48 mV, respectively. Compared to the others strain
gauges, the strain gauges 4B6 and AB3 recorded the largest deformations for this movement
in both bending directions. Compared to the other movements, the strain gauges B6, ABI,
and AB6 recorded their highest convex deformation and B3 recorded its highest concave
deformation. IMU 1 and IMU 2 recorded comparable angular velocities gz/, and gz2 around

the Z-axis

Elbow Extension (EE): The largest deformations were recorded by the strain gauges B/,
B5, and B6 with -4.11mV, -2.99mV and -1.98mV, respectively. Compared to the other
strain gauges, the strain gauges 4B6 and AB1 recorded the largest deformations for this
movement in the two bending directions. Compared to the other movements, the strain
gauges BI, B2, and B5 recorded their largest concave deformation. IMU 1 and IMU 2

recorded comparable angular velocities gz/, and gz2 around the Z-axis.

Forearm Pronation (FP): The largest deformations were recorded by the strain gauges B2
and B4 with 1.67 mV, 1.04 mV, respectively and AB/ and AB3 with 1.61 mV, 0.95 mV
respectively recorded the largest deformations. Compared to the other strain gauges, the
strain gauges B2 and B3 recorded the largest deformations for this movement in both
bending directions. Compared to the other movements, the strain gauge B2, recorded its
largest convex deformation. IMU 1 and IMU 2 recorded comparable angular velocities gx/

and gx2 around the X-axis.
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)

6)

7)

8)
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Forearm Supination (FS): The largest deformations were recorded by the strain gauges
AB3, ABI, AB6 and AB2, with -1.66mV, 1.30 mV, -1.14mV, 1.02 mV respectively and B6
with -1.14mV recorded the largest deformations. Compared to the other strain gauges, the
strain gauges B6, and AB3 recorded the largest deformations for this movement in both
bending directions. None of the gauges recorded their maximal deformation during forearm
supination. IMU 1 and IMU 2 recorded comparable angular velocities gx/, and gx2 around

the X-axis.

Wrist Flexion (WF): The largest deformations were recorded by the strain gauges ABI, AB2
and ABS5 with 2.41 mV, 1.36 mV, -1.89mV respectively and B6 with 1.81 mV recorded the
largest deformations. Compared to the other strain gauges, the strain gauges AB/ and AB5
recorded the largest deformations for this movement in both bending directions. Compared
to other movements, the strain gauge ABS recorded its largest concave deformation. IMU
1 recorded angular velocities gy/ around the Y-axis. IMU 2 placed on the forearm and did

not record any significant movement.

Wrist Extension (WE): The largest deformations were recorded by the strain gauges B4 and
B6 with 1.34 mv, 1.35 mV, respectively as well as 4B1, AB2, AB3 and AB4 with -3.40mV,
1.55mV, 1.52 mV, 1.06 mV respectively recorded the largest deformations. Compared to
the other strain gauges, AB2, AB6 recorded the largest deformations for this movement in
both bending directions. Compared to the other movements, strain gauge B4 recorded its
largest convex deformation. IMU 1 recorded angular velocities gy/ around the Y-axis. IMU

2 placed on the forearm did not record any significant movement.

Wrist Ulnar deviation (WL): The largest deformations were recorded by the strain gauge
B6 with 1.39 mV as well as ABI, AB2 and AB3 with 2.65mV, 1.58 mV, 2.19 mV
respectively recorded the largest deformations. Compared the other strain gauges, AB/ and
B3 recorded the largest deformations for this movement in both bending directions.
Compared to the other movements, the strain gauges B/ and AB3 recorded their largest
concave deformations. IMU 1 and IMU 2 recorded comparable angular velocities gz/ and

gz2 around the Z-axis.

Wrist Radial deviation (WR): The largest deformations were recorded by the strain gauges
B2 and B6, with 1.26 mV, 1.02 mV respectively as well as AB1, AB2, AB4, AB5 and AB6
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with -4.32mV, 1.67mV, 1.22mV and 1.14 mV respectively recorded the largest
deformations. Compared to the other strain gauges, AB2 and ABI recorded the largest
deformations for this movement in both bending directions. Compared to the other
movements, the strain gauges B5, 4B4, and ABS recorded their largest convex deformation
and ABI, AB6 recorded its largest concave deformation. IMU 1 and IMU 2 recorded

comparable angular velocities gz/, and gz2 around the Z-axis.

9) Power Grips (PG): The largest deformations were recorded by the strain gauges AB1, AB2
and AB3 with 1.71 mV, 1.81 mV and -2.32 mV respectively recorded the largest
deformations. Compared to the other strain gauges, 4B2, AB3 recorded the largest
deformations for this movement in both bending directions. Compared to the other
movements, the strain gauges 4B2 recorded its largest convex deformation and 4B3
recorded its largest concave deformation. IMU 1 recorded its angular velocities gy/ around

the Y-axis. IMU 2 placed on the forearm did not record any significant movement.
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Figure 5.9 (a) 3D linear accelerations and 3D angular velocities from the IMU 1 placed on the hand. (b) 3D
linear accelerations and 3D angular velocities from the IMU 2 placed on the forearm. (¢) Data from the six
strain gauges in the bracelet B placed on the arm. (d) Data from the six strain gauges in the bracelet AB
placed on the forearm.



Tableau 5.2 Peak signal intensity for each strain gauge per movement(mV)

EF  EE FP FS WF WE WL WR PG
B1 -0.62 -4,11 -0.71 -043 -032 -0.32 0.13 -0.37 -0.14
B2 1.02 -115 1.67 072 130 094 0.74 126 0.51
B3 -1.19 -098 -098 -0.70 -0.72 -0.69 -0.74 -0.62 -0.63
B4 021 124 1.09 052 050 134 085 076 0.66
B5 -1.22 -299 039 -036 020 026 044 045 035
B6 450 -198 -085 1.25 181 145 139 1.02 0.80
AB1 448 138 1.61 130 241 -340 265 -432 1.71
AB2 082 044 060 1.01 136 155 158 1.67 1.81
AB3 -154 0.76 095 -1.66 0.89 1.52 2.19 085 -2.42
AB4 -045 -095 -026 0.65 -046 1.06 030 1.22 0.79
AB5 0.65 064 024 059 -1.89 091 035 1.14 0.62
AB6 6.03 154 069 -1.14 -088 -0.86 -041 -1.32 0.29

84
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Tableau 5.3 Strain gauge signal intensity pattern

Maximum voltage variation per strain gaugeMaximum voltage variation per movement
(+) mV max (-) mV Min (+) mV max (-) mV max

EF Bo6, AB1, AB6 B3 AB6 AB3
EE - B1, B2, B5, B6, AB4 AB6 AB1
FP B2 - B2 B3

FS - - B6 AB3
WF - ABS ABI1 ABS
WE B4 - AB2 AB6
WL B1, AB3 - ABI1 B3

WR BS5, AB4, ABS AB1, AB6 AB2 ABI
PG AB2 AB3 AB2 AB3

5.7 Discussion

The objective of this study was to develop a novel wearable system to identify intentions of
movement by combining strain gauges and inertial measurement units. The following discussion
addresses A. the ability of this system to identify movement intentions, and B. the design of the

sensor system combining strain gauges and IMUs.

5.7.1 Identification of movement identification

Table 4.1 identifies the muscles responsible for each movement. Fig. 5.2 shows the placement of
the sensors regarding the muscles involved in the upper limb motion. A mapping was established
between the movements performed by the subject (Fig. 5.3) and the signals recorded by the strain

gauges (Fig. 5.9).

1) Elbow Flexion (EF): The strain gauge B6 was placed on the biceps brachii which explains
the high intensity signal (Fig. 5.9). By going around the arm with the strain gauge bracelet
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(AB), ABI and AB6 were placed near the brachioradialis, which explained the obtained
deformation. However, the gauge B6 was expected to record the largest deformation as the
biceps brachii is the main muscle responsible for the forearm flexion. By folding the
forearm on the arm (Fig. 5.3 (1)), the biceps brachii came into contact with the forearm

which explains that the gauge AB6 recorded more deformations.

2) Elbow Extension (EE): The strain gauges B/ and B6 were placed on the biceps brachii
which extends during the e/lbow extension. It is therefore normal to record deformations in
the opposite direction to the bending movement for gauges B6 and BI(Fig. 5.9(c)). The
signal of B6 went from positive for elbow flexion to negative for elbow extension. The
strain gauge BS5 was placed close to the Brachialis which also extends during elbow
extension. The gauges ABI and AB6 were placed near the Brachioradialis which have
recorded deformations. These measurements can be explained by the nature of the

extension movement which tends to stretch the forearm skin at full range of motion.

3) Forearm Pronation (FP): The strain gauges ABI and AB3 were placed around the pronator
teres which is mainly responsible for the forearm pronation, recording therefore signals
with high intensity. The biceps brachii is also involved in the forearm pronation. The biceps
movement creates large skin deformation of the skin around the arm which matches the

high intensity signals recorded by strain gauges B2 and B4.

4) Forearm Supination (FS): The strain gauges ABI, AB2 and AB3 were located around the
supinator, which is responsible for the forearm supination. The strain gauges ABI and AB3
were involved in both pronation, and supination. B6 is centered on the biceps brachii, which
is involved in this movement. The forearm pronation and supination are like a twisting
movement around the forearm axis, which causes the forearm skin to stretch, recording

therefore relevant deformations.

Most of the muscles involved in the subsequent movements are in the forearm. Hence, the strain
gauges of the bracelet (B) placed on the arm recorded decreasingly weak signals (Fig. 5.9 (c)). The
forearm muscles are packed side by side or overlapped so it was more difficult to make a link

between the muscles involved in the movement and of the strain gauges positions
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5) Wrist Flexion (WF): The strain gauges ABI, AB2, and AB5 were close to the muscle group
involved in wrist flexion. The gauge AB1 gauge is centered on the flexor carpi radialis,

which explains a stronger signal than the other strain gauges.

6) Wrist Extension (WE): The strain gauges ABI, AB2, AB3, and AB4 were near the muscles
involved in the wrist extension. ABI1 is near the extensor carpi ulnaris, and the digitorum

extender which explains a stronger signal than the other gauges.

7) Wrist Ulnar deviation (WL): The muscles responsible for the ulnar deviation of the wrist is
the extensor Carpi ulnaris. The strain gauges ABI and AB3 were placed near this muscle,

which explains the recorded deformations.

8) Wrist Radial deviation (WR): The muscles responsible for the radial deviation of the wrist
are the flexor carpi radialis, extensor carpi radialis longus, extensor carpi radialis Brevis.
This muscles group goes almost all around the forearm, which explains the deformations

recorded by most strain gauges from the forearm bracelet AB.

9) Power Grips (PG): The gripping movement mainly involves the extrinsic and intrinsic hand
muscles. Some forearm muscles (e.g., flexor digitorum superficialis) are involved in power

grips which explains the signals recorded by strain gauges AB1, AB2, and AB3.

The data from IMU 1 and 2 (Fig 5.9 (a), (b)) provided additional information about the motion.
Although it was difficult to have a visual interpretation of the linear acceleration’s data, the angular
velocities provided information used to derive a relation between the graphs obtained and the

movements.

For the movements of EF, EE, FP and FS it was expected to register comparable signals of linear
accelerations and angular velocities from the two IMUs placed at the forearm and arm. Indeed, for
these movements the IMUs were aligned along the same axis (Fig, 5.2 (a)) and the wrist remained
in neutral position which was similar to two IMUs placed on a rigid bar. Observing the graphs
confirmed our assertion. These movements were performed around the same axe in opposite

direction, and a change of sign was clearly noticed in the signals (Fig. 5.9 (a), (b))

The movements of WF, WE, WR, WL showed a quasi-static angular acceleration for the IMU placed
on the forearm (Fig. 5.9 (b)). Indeed, only the wrist performed these movements, so that the IMU

1 placed on the hand recorded accelerations. The gripping movement is an opening and closing of
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the hand, so neither acceleration nor velocities should be relevantly recorded by the IMUs. As the

participant did not maintain a perfect static position, slight accelerations were observed in (Fig. 5.9
(a), (b)).

The results showed that the strain gauge bracelet placed on the forearm recorded signals that could

make a distinction between wrist movements and the power grips movement. The strain gauge

bracelet placed on the arm recorded signals that could make a distinction between various forearm

movements, e.g. pronation vs supination. Also, the combination of strain gauges that recorded

maximum AV is unique for each movement (see Table 5.3). This uniqueness represents a pattern

to identify upper limb movement.

It is worth noting in Table 5.3 that:

1)

2)

3)

4)

)

6)

There was no strain gauge which measured its highest deformation for forearm supination.

Hence, no strain gauge was optimally placed to detect forearm supination.

The strain gauge AB6 was the most impacted one by elbow flexion, recording then its

maximal AV, AB6 is a good discriminant for the e/bow flexion.

The strain gauge B2 was the most impacted one by the forearm pronation, recording then

its maximal AV'. B2 is a good discriminant for the forearm pronation.

The strain gauge 4B5 was the most impacted one by the wrist flexion, recording then its

maximum AV . AB5 is a good discriminant for the wrist flexion.

The strain gauge AB1 was the most impacted one by the wrist radial deviation, recording

then its maximum AV . ABI is a good discriminant for the wrist radial deviation.

The strain gauges AB2 and AB3 were the most impacted one the power grips, recording

then their maximum AV . These ones are good discriminants for the power grasp.

The impacts of adding IMUs to the system can be summarized as follows:

1)

2)

The angular velocities allowed the identification of the beginning and end of each

movement in the sequence.

The position of the limb could be inferred by using angular velocities.
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3) The linear acceleration contribution is unclear at this point. However, further analysis using
different techniques of artificial intelligence, such as machine learning with deep neural

network, could provide more information regarding the kinematics data.

The strain gauges provided information about muscle contraction and the IMUs provided
information about the motion. Comparing to the work done by [15], [23]. These results showed the
ability of this sensor to record signals making it possible to distinguish 9 movements of the upper

limb and therefore confirming the initial RH.

5.7.2 Sensor design

The proposed system was compact and portable making it ideal for daily activities (Fig. 5.7 (a),
(b)). The developed bracelet used strain gauges and a kinesiological tape which are commercially
readily available. The IMU 1 placed on the hand was not optimal as it was relatively large and

cumbersome. However, a smaller IMU system could solve this issue.

Each strain gauge in the matrix collected a specific signal. The third and fourth maximum AV (see
Table 5.2) were recorded by gauges B/(4.48 mV) and A4BI(-4.11mV) which were placed
horizontally (Fig. 4.1). Aligning the strain gauges in the direction of the highest strain [15] was not
optimal since the sensor did not record the deformation about the other axis. This information can

be very useful for a future classification algorithm to distinguish between different movements.
The main design requirements (DR) of this system were achieved:

DR 1: It must be able to measure multi-axial skin deformations: Indeed, measuring strain on

multiple axes is therefore important to better capture skin deformation due to muscle activity.

DR 2: It must be wearable. Indeed, the flexible PCB-based strain gauge matrix fabrication method
is systematic, so the shape, size and orientation of the gauges can be changed depending on the
application. Different strain gauge matrices can be made by using flexible PCBs and placed in

different sites on the human body to collect different information.

DR 3: It must be able to be used several times in daily three-dimensional movements: Indeed, the
flexible PCB has also provided a good solid connection with the gauges that prevented the
connections to break or unsolder during movements as a solution to the robustness issues noted in

[15].
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The number of strain gauges, their orientation as well as the position of the strain gauge bracelet
are important factors that can be optimized by referring to knowledge of human anatomy. This
knowledge does not need to be specific as with SEMG which requires the sensors to be placed on
the right muscle to detect the right signal [12]. The developed system had 12 channels of strain
gauges, and more strain gauges can be added if necessary. Contrarily, it would be nearly
impossible/or too bulky to place the same number of SEMG electrodes on a person without
interfering with his daily activities. Also, the frequency of data acquisition of the proposed system
was customizable between 40 Hz to 200 Hz which is far less than sEMG sampling frequency (1000
Hz) [14]. A technical limitation related to the use of Wheatstone bridge was the need to recalibrate

each bridge after a certain amount of uses. A subsequent work can investigate that issue.

5.8 Conclusion

The objective of this research was to develop a novel wearable system to identify intentions of
movement by combining strain gauges and inertial measurement units. The proposed system is
composed of 1. two strain gauge bracelets using 6 strain gauges each, connected to a flexible
printed circuit board and 2. two inertial measurement units. To our knowledge, this system is the
first portable battery-powered sensor using on-board electronics for strain gauge signal
conditioning to detect human movement intentions. The system was tested on the upper limb, and
successfully identified 9 main movements through the variations in signal intensity of the strain
gauges. These results show the potential of such a sensory system to become a smart wearable
sensory system to detect human movement intention. The future perspectives will be to extend the
system, e.g., to the lower limbs, and to identify complex movement combinations by using pattern
recognition algorithms with such sensory systems. Future applications could target human

computer interfacing.
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CHAPITRE 6 RESULTATS COMPLEMENTAIRES

Ce chapitre a pour but de décrire les résultats qui ont été obtenus suite a I’implémentation des
algorithmes d’apprentissage profond pour I’identification des intentions de mouvements. Dans un
premier temps, les résultats obtenus de la comparaison des modeles LSTM et CNN-LSTM sont
présentés, suivis par les résultats de la recherche des hyperparameétres et ensuite la quantification

de I'impact des données cinématiques sur les résultats

6.1 Comparaison des modéles

Le premier modele qui a été développé est le modele LSTM. Le choix des paramétres initiaux
¢tait, pour la plupart, arbitraire. Par la suite, les tests ont permis de déterminer un ensemble de
parameétres de référence pour former un modele de référence Figure 4.17 dont les hyperparameétres

sont présentés dans le Tableau 6.1.

Tableau 6.1 Hyperparametres du modele de référence

Taille des lots 100
Nombre d’itérations 50
Terme de régularisation 0.02
Taux d’apprentissage le-03
Decay le-05
Dropout 0.2

Le Tableau 6.2 résume les résultats présentés dans la matrice de confusion obtenus sur I’ensemble
de tests pour le modele LSTM présenté a la Figure 6.3 et celle obtenue sur I’ensemble test en
utilisant le modéle CNN-LSTM présent¢ a la Figure 6.4. En termes de performance de
classification, le modele LSTM a atteint une précision de classification de 92.5% et le modéle
CNN-LSTM a quant a lui atteint 95.1%. En général, le modele CNN-LSTM a obtenu une précision
de classification plus élevée par mouvement comparé au modele LSTM. Ces résultats sont
présentés dans le Tableau 6.2. Cependant, le modele LSTM a surpassé le modele CNN-LSTM pour
certains mouvements. En effet, le modele LSTM a obtenu une précision de classification de 100.0%

pour la pronation de I’avant-bras (FP), et 99.0% pour la flexion du poignet (WF) tandis que le
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modele CNN_LSTM a obtenu 95.1% et 98.0% respectivement. Les deux modeles ont aussi des
performances similaires pour les mouvements de déflexion radiale du poignet (WR) et de
préhension (PG) avec 96.0% et 100% de précision de classification respectivement. Pour la mesure
de performance basée sur le MCC, section 2.6, Le modéle LSTM a obtenu un score de 0.92 et le
modele CNN-LSTM a obtenu un score de 0.95. En outre, cela a pris 20.4s pour entrainer le modele

CNN-LSTM et 19.3s pour entrainer le modele LSTM.

Tableau 6.2 Comparaison des résultats des modeles LSTM et CNN-LSTM

NM | EF | EE | FP | FS | WE | WF | WR | WL | PG |TOTAL |MCC| t(s)

s g LSTM [60.40[98.02|98.02| 100 |95.05|98.02(99.01(96.04|80.20|100| 92.48 | 0.92 [19.3
5§ § =

2 £ CNN-

g 2 72.28(99.01| 100 |95.05(98.02| 100 |98.02(96.04 [92.08|100| 95.05 | 0.95 |20.4
ol LSTM

Il arrive que des modéles apprennent des caractéristiques spécifiques a I’ensemble d’entrainement.
En effet, en entrainant un modele suffisamment longtemps sur un ensemble de données (ici
I’ensemble d’entrainement), il est capable d’atteindre une précision de classification élevée.
Cependant, lorsque ce modele est utilisé sur un nouvel ensemble de données (ici I’ensemble de
validation), il va obtenir une faible précision de classification. C’est le probléme de généralisation
[58]. Il est donc important de regarder les courbes d'apprentissages de I'ensemble d'entrainement
et de validation présentée sur la Figure 6.1 et la Figure 6.2 pour observer lorsque le sur-
apprentissage commence a se produire. L’observation de ces graphiques montrent que la précision
de classification augmente au fur et a mesure que le nombre d’itération augmente (epoch) pour
I’ensemble d’entrainement et I’ensemble de validation, il n’y a donc pas de sur apprentissage. Le
surapprentissage est observé sur une courbe lorsque la précision de classification sur les données

d’entrainement augmente tandis que celle sur I’ensemble de validation diminue [58].
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Figure 6.3 Matrice de confusion du modéle LSTM
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Figure 6.4 Matrice de confusion du modéle CNN-LSTM

Pour résumer la comparaison des modeles, le modele CNN-LSTM a surpassé le modele LSTM.
Avec une précision médiane de 95,1 % (MCC = 0,95), contre 92,5 % (MCC = 0,92). Cette
comparaison aurait di inclure plusieurs essais pour faire la moyenne, cependant, due a la contrainte
de temps le nombre d’essais a été limité. Le modele CNN-LSTM a été choisi pour la recherche
d'hyperparamétres. Cependant, la sélection de meilleurs parameétres pour le modele LSTM pourrait

conduire ce modéle a potentiellement surpasser le modele CNN-LSTM.
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6.2 Recherche des hyperparamétres

Les résultats de la recherche d'hyperparametres ont €t¢ compilés ci-dessous. Pour chaque valeur
hyperparametre, cinq valeurs ont été choisies pour déterminer leur impact sur I’apprentissage du

modele. Les valeurs optimales pour chaque hyperparamétre ont ét¢ marquées en gras.

Les hyperparametres testés sont présentés. Les tableaux a gauche présentent la valeur des
hyperparametres testée ainsi que le MCC et la précision de classification obtenue pour chaque
valeur d’hyperparametre. Les figures a droite présentent 1’évolution de la précision pour les

ensembles tests et validation en fonction des valeurs des valeurs des hyperparameétres.

Tableau 6.3 Résultat de la variation du taux

. 0 .
d'apprentissage ..
) =
Précision de 08
A MCC -
classification % b e /
=t
x
c
le-01 10.0 0 §0e| /
le-02 89.8 0.89 z
02 { —e~ entrainement
1e-03 95.2 0.95 test
le-04 86.5 0.85 s o 107 v
Taux d'apprentissage
1le-05 36.3 0.31

Figure 6.5 Evolution de la précision pour les
ensembles tests et validation en fonction du taux
d’apprentissage



Tableau 6.4 Résultat de la variation du

nombre de filtres pour le CNN

Nombre Précision de MCC
de filtres Classification (%)
9 914 0.905
18 93.3 0.925
32 95.6 0.951
64 95.2 0.947
128 95.4 0.949

Tableau 6.5 Résultat de la variation du
nombre de neurones pour le LSTM

Nombre de Précision de MCC
neurones Classification (%)
9 92.7 0.919
18 92.8 0.920
32 95.0 0.945
64 93.6 0.929
128 95.8 0.954
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Tableau 6.6 Résultat de la variation du terme
de régularisation

- ..‘ . -9 otranement
Terme de Précision de MCC test

098 o

régularisation Classification (%) )
gil"ﬂ '7\7“7‘1
0.0 94.6 0.939 §
0.001 93.4 0.926 5
0.002 95.0 0.944 g 0"
0.01 943 0.936 094
0.02 93.5 0.928 v v . .
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Figure 6.8 Evolution de la précision pour les
ensembles tests et validation en fonction du terme
de régularisation

Tableau 6.7 Résultat de la wvariation du

099 4 ’—».\‘ ~o~ entrainement
nombre d'échantillon par lot S o test
098 e B
Nombre Précision de MCC g . B
d’échantillon . . S
Classification 3
par lot (%) g 096
25 95.3 0.948 - i
50 94.7 0.941 —
100 95.5 0.951 093 . . , , :
%0 100 150 200 250 300
200 95.0 0.944 batch size
300 93.2 0.924

Figure 6.9 Evolution de la précision pour les
ensembles tests et validation en fonction du
nombre d’échantillon par lot

Il est toujours important de s’assurer que le modéle ne soit pas surentrainé sur les données
d’entrainement. Il est donc important d’analyser les courbes d’apprentissages pour chacune des

valeurs d’hyperparametres testées. Ces courbes sont présentées en Annexe B.

Le Tableau 6.4 résume les résultats qui ont été obtenus par la recherche séquentielle des

hyperparameétres.
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Tableau 6.8 Résumé des valeurs optimales d’hyperparamétres

Taux d’apprentissage 1e-03
Nombre de filtres pour le CNN 32

Nombre de neurones dans le LSTM 128

Terme de régularisation 0.002

Batch size 100

Apres avoir déterminé les valeurs optimales d’hyperparameétres, la prochaine étape a consisté a

déterminer I’impact des données inertielles sur la précision de classification.

6.3 Impact des données inertielles

La recherche des hyperparamétres a conclu que les hyperparamétres de bases sont ceux qui ont
permis d’avoir les meilleurs résultats de classification. Ces paramétres ont donc été utilisé€s sur les
signaux provenant des jauges de déformations. La matrice de confusion obtenue sur I’ensemble
contenant exclusivement les signaux des jauges de déformation est présentée a la Figure 6.6. Le
Tableau 6.5 montre la comparaison entre le mod¢le utilisant uniquement les signaux provenant des
jauges de déformations et le modele de référence utilisant I’ensemble de données (IMUs et jauges

de déformation).

En termes de performance de classification, le mode¢le utilisant uniquement les signaux provenant
des jauges de déformation a obtenu une précision de classification de 89.3%. Le modele de
référence a obtenu une précision de classification de 95.1%. Le modele utilisant I’ensemble des
données (IMUs et jauges de déformation) a obtenu de meilleure précision de classification comparé
au modele utilisant uniquement les jauges de déformation, Tableau 6.5. Cependant, on remarque
que le modgele utilisant uniquement les signaux provenant des jauges de déformations a surpassé le
modele de référence pour certains mouvements. En effet, ce modele a obtenu une précision de
classification de 99.0% pour la pronation de 1’avant-bras (FP), et 100.0 % pour la flexion du poignet
(WF) tandis que le modele CNN_LSTM a obtenu 95.1% et 98.0% respectivement. En outre, cela
a pris 20.4s pour entrainer le modéle de référence et 19.9s pour entrainer le modele utilisant les

jauges de déformations uniquement, des temps assez comparables.
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NM

EE

EF | FP

FS

WE

WF | WR

WL | PG

TOTAL

MCC

t(S)

Jauges

45.5

98.0

95.1 | 99.0

97.0 | 93.1

100.0| 91.1

76.2 98.2

89.3

0.88

19.9

IMUs+

jauges

Précision de
classification
(%)

72.3

99.0

100.0| 95.1

98.0 |100.0

98.0 | 96.0

92.1 (100.0

95.1

0.95

20.4

Comme il a ét¢ mentionné dans la section 6.1, il est toujours important d’observer les courbes

d’apprentissages afin de s’assurer que le modéle ne soit pas surentrainé. Les courbes

d’apprentissages du mod¢le utilisant les jauges de déformations sont donc présentées a la Figure

6.5. L’observation de ces graphiques montrent que la précision de classification augmente au fur

et a mesure que le nombre d’itération augmente (epoch) pour I’ensemble d’entrainement et

I’ensemble de validation, il n’y a donc pas de sur apprentissage.
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Figure 6.10 (a) : courbe d’apprentissage du modéle CNN-LSTM, (b): courbe de la fonction cotit
du modé¢le CNN-LSTM
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Confusion matrix
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Figure 6.11 Matrice de confusion du mode¢le entrainé exclusivement sur les signaux provenant
des jauges de déformation
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CHAPITRE 7 DISCUSSION GENERALE

L’objectif général de ce projet de maitrise qui était de développer un systéme portable pour
identifier les intentions de mouvement en combinant des jauges de déformation et des centrales
inertielles a été atteint. Dans cette section, un résumé de la discussion de ’article est présenté.
Ensuite, une discussion sur les résultats complémentaires portant sur 1’entrainement d’un réseau de
neurones profond et la classification de neuf mouvements du membre supérieur ainsi qu’une
position dite de repos est présentée, le tout suivi de limites de 1’étude et les perspectives de

recherche.
7.1 Synthése de P’article scientifique

7.1.1 Détection d’intention de mouvement

Les résultats ont montré que le bracelet de jauges de déformation placé sur I'avant-bras a enregistré
des signaux qui ont ét¢ utilisés pour distinguer les différents mouvements du poignet et le
mouvement de préhension. Le bracelet placé sur le bras a enregistré des signaux qui ont été utilisés
pour distinguer les mouvements de 1'avant-bras. En outre, I’analyse de I’intensité des signaux a
révélé que la combinaison de jauges qui ont enregistré un A} maximal est unique pour chaque
mouvement ce qui pourrait étre utilis€é comme modele pour identifier les mouvements du membre
supérieur. En outre, les centrales inertielles en plus de fournir de I’information sur la cinématique
du mouvement, elles ont permis d’identifier de facon claire le début et la fin de chaque mouvement

de la séquence de mouvements a I’étude.

En somme, les jauges de déformations ont fourni de 1’information sur la contraction musculaire et
les IMU sur la cinématique du mouvement. Les résultats préliminaires obtenus ont prouvé la
capacité de ce type de capteurs a enregistrer des signaux permettant de distinguer 10 mouvements

du membre supérieur.

7.1.2 Fabrication du capteur

Le systéme développé comprend deux types capteurs : un systéme d’acquisition des signaux
provenant des jauges de déformation et une centrale inertielle. Les deux capteurs ont une dimension
de [12x10x3.3 cm] et [5.5x3.5x2.2 cm] respectivement. Le systéme est donc compact et portable,

ce qui le rend idéal pour les activités quotidiennes. Le systéme utilise des jauges de déformation,
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une bande kinésiologique, une centrale inertielle BNOOS5S5 qui sont des matériaux peu dispendieux

disponibles dans le commerce.

Ces travaux ont prouvé que la mesure des déformations sur différents axes est importante pour
mieux capturer la déformation de la peau due a l'activité musculaire. La méthode fabrication des
matrices des jauges de déformations basées les PCBs flexibles permettent de placer ces capteurs
sur différents sites du corps humain pour collecter différents signaux. Cette technique a également
permis d’avoir une connexion solide avec les jauges empéchant celles-ci de se rompre ou de se
dessouder lors des mouvements. Le nombre de jauges de déformation, leurs orientations ainsi que
la position du bracelet sont des facteurs importants qui peuvent étre optimisés en se référant aux

connaissances de base de 1'anatomie humaine.

7.2 Comparaison des modeéles de classification

L’ajout d’une couche de convolution unidimensionnelle avant la couche LSTM a permis
d’augmenter la précision de classification de 2.6% pour atteindre 95.1%. Ces résultats sont en
adéquation avec nos attentes, car I'utilisation des couches de convolutions est une excellente
méthode pour I’extraction des caractéristiques des signaux. Cependant, la capacité des réseaux de
convolutions a extraire des caractéristiques dépend fortement des valeurs d’hyperparameétres tels
que le nombre de filtres, le pas, les couches de mise en commun, etc. Ainsi, pour avoir une
extraction de caractéristiques optimale il est important de bien déterminer ces parameétres en
effectuant plusieurs tests. Ces tests sortent du cadre de cette étude, mais pourraient expliquer
pourquoi le modele LSTM a eu de meilleures précisions de classification que le modele CNN-
LSTM pour les mouvements de pronation de 1’avant-bras et de flexion du poignet. Aussi, le MCC
du modele CNN-LSTM est plus proche de 1 que celui du modéle LSTM ce qui démontre que le
modele CNN-LSTM se rapproche plus d’un classificateur idéal.

Par ailleurs, le temps d’entrailnement du modeéle CNN-LSTM est de 1.1s plus élevé que celui du
modele LSTM. Cela est prévisible, car 1’ajout d’un réseau de convolution avant le réseau de
neurones récurrents (LSTM) augmente le nombre de parametres que le réseau doit mettre a jour
dans le processus d’apprentissage. En effet, le modéle LSTM avait un total de 17,424 parameétres
a entrainer tandis que le modele CNN-LSTM avait un total de 21,296 ce qui représente un ajout de

3,872 parametres.
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7.3 Recherche d’hyperparamétres

Les résultats obtenus par la recherche d’hyperparametres ont confirmé que les valeurs
d’hyperparamétres utilisées dans le modéle de base étaient pour la majorité optimale. En effet,
seule I’augmentation des neurones dans les couches récurrentes a prouvé avoir un impact sur la
précision de classification. Le modele avec 128 neurones a la place des 32 neurones de bases, a
permis d’augmenter la précision de classification de 0.8% pour atteindre 95.8%. Cependant, cela
représente quatre fois plus de neurones soit 199,104 parametres supplémentaires pour une

augmentation de 0.8%. En plus, le temps d’entrainement est passé de 20.4s a 23.3s.

Il est important de noter que la méthode de recherche séquentielle des hyperparametres n’est pas
optimale. Une recherche par grille ou d’autres méthodes plus avancées qui procedent a une
combinaison aléatoire des hyperparametres sont plus recommandées. Cependant, cette recherche
préliminaire d’hyperparameétres a permis d’établir les bases pour de futures études plus

approfondies.

7.4 Impact des données inertielles

Les résultats présentés a la section 6.3 ont démontré que la présence des données inertielles a permis
d’augmenter de manicre significative la précision de I’algorithme de classification de mouvements.
En effet, les données inertielles ont permis d’augmenter la précision de classification d’environ
5.7%. Ce résultat est en adéquation avec les travaux effectués par [22] et [84] qui ont reporté que
les informations cinématiques extraites des accélérometres peuvent améliorer la précision des

algorithmes de classification des mouvements basés sur les SEMG.

7.5 Limites et perspectives

Bien que I’objectif général de ce projet de recherche ait été atteint, le transfert éventuel du systeme
et de l’algorithme de classification dans des applications de la vie quotidienne n’est pas
envisageable a court terme en raison de plusieurs limitations. Ces limitations ouvrent la voie a de

nouvelles recherches.

Conditionnement du signal provenant des jauges de déformations :
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Une limitation technique liée a 'utilisation du pont de Wheatstone est la nécessité de rééquilibrer
chaque pont aprés un certain nombre d'utilisations (généralement 20). Ceci peut étre un
inconvénient pour développer un systéme qui pourrait étre utilisé pour les activités quotidiennes.

Une calibration automatique et robuste des ponts de Wheatstone est encore nécessaire.
Choix des centrales inertielles et position :

La centrale inertielle utilisée dans le cadre de ce projet est la centrale BNOO055 de Adafruit. Cette
centrale a permis d’avoir d’atteindre I’objectif de ce mémoire. Cependant, il existe des centrales
inertielles plus performantes permettant d’avoir des données plus stables. Aussi, I'IMU (1) placé
sur la main n'est pas optimal a cause de sa taille. Il faut donc trouver des capteurs de plus petites
tailles, ce qui réduirait leur aspect encombrant. En outre, 1’étude de I’effet des mouvements

parasites comme la marche sur le systéme pourrait faire 1’objet de prochaines études.
Nombre et positions des bracelets de jauges de déformations :

Comme démontré dans ’article, Chapitre 4, 1’orientation des jauges est un parameétre important
pour la détection des intentions de mouvement. Deux axes orthogonaux ont été étudiés dans ce
projet de recherche. Il pourrait étre intéressant d’étudier les signaux provenant des jauges en
configuration de rosettes. Aussi, une autre étude pourrait porter sur le nombre optimal de jauges a

utiliser pour atteindre une précision de classification satisfaisante.
Collecte des données :

La collecte des données a été effectuée sur une population saine. Une étude ultérieure pourrait
porter sur des personnes ayant des faiblesses musculaires avec un nombre similaire de mouvements
(10) du membre supérieur. Cette €¢tude permettra de valider le fonctionnement du systéme sur des

personnes n’ayant pas de grandes activations musculaires.
Entrainement du classificateur :

Aussi, pour cette étude toutes les données de tous les participants ont été utilisées pour former les
trois ensembles de données (entrainement, validation et test) afin de développer 1’algorithme de
classification. Il serait trés intéressant de mettre en place des algorithmes de classification de
mouvement spécifique a chaque personne, car [22] a prouvé que la mise en place de classificateurs
spécifiques a un sujet permettait d’augmenter la précision de classification. Aussi, Un entrainement

successif en déplacant le bracelet autour du bras pourrait permettre d’augmenter la robustesse de
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I’algorithme de classification par rapport a la réinstallation du bracelet. En outre, I’entrainement de
I’algorithme de détection d’intention de mouvement sera fait par un personnel qualifié. Ce dernier
utilisera les métriques présentées dans la section 2.6 pour valider le bon fonctionnement de
I’algorithme. L’algorithme développé devrait étre aussi testé pour des contractions involontaires

des muscles.

CHAPITRE S8 CONCLUSION ET RECOMMENDATIONS

L'objectif de ce travail de maitrise était de développer un systeme de mesure portable capable
d’identifier les intentions de mouvement en combinant des jauges de déformation et des centrales
inertielles. Le systéme proposé est composé de 1. Deux bracelets utilisant chacun 6 jauges de
déformation et 2. Deux centrales inertielles. Une carte d’acquisition adaptée a notre application a
été développée pour conditionner les signaux provenant des jauges de déformations. Afin de
garantir la solidité des connexions électriques et de bien positionner les jauges de déformations,
une méthode utilisant des PCB flexibles a été proposée. Une bande kinésiologique a été utilisée
afin de garantir un bon contact entre les jauges de déformation et la peau. La centrale inertielle
utilisée est le BNOOS5 qui fait partie de la ligne de capteur intelligent développé par Bosh

SensorTec. De plus le systéme a ¢ét¢ congu dans I’optique de pouvoir étre embarqué.

En ce qui concerne la reconnaissance d’intention de mouvements, les jauges de déformation ont
permis d’avoir une mesure des contractions musculaires. Les centrales inertielles ont fourni de
I’information sur la cinématique du mouvement. Le systéme de mesure a été¢ préalablement testé
sur un sujet effectuant une séquence de neuf mouvements et d’une position dite de repos. Une
méthode basée sur la variation d’intensité des signaux provenant des jauges de déformation a
permis d’identifier les neuf mouvements étudiés. Par la suite, des essais en laboratoire sur 7 sujets
ont permis de construire une base donnée pour entrainer des algorithmes d’apprentissages profonds
pour la détection d’intention de mouvements. Deux architectures différentes ont été testées a savoir
un réseau de neurones récurrent et la combinaison entre ce réseau et un réseau de neurones
convolutifs. La combinaison des deux réseaux s’est avérée meilleure avec une précision de
classification de 95.1%. Une étude préliminaire sur la recherche d’hyperparameétres a été effectuée
afin d’améliorer la performance de ce modele. En outre, dans cette étude les informations

cinématiques ont permis d’augmenter la précision de 1’algorithme de classification de 5.8%. Ce
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résultat vient confirmer le fait que I’information produite par les centrales inertielles est

complémentaire a celle fournie par les jauges de déformations.

Bien qu’il reste des améliorations a apporter a ce projet de recherche, les résultats obtenus
démontrent du potentiel d'un tel systéme a devenir un systéme sensoriel portable intelligent pour

détecter l'intention de mouvement de [’humain.
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ANNEXE A EXEMPLE DE CALCUL DE GRADIENT

Couche Couche Couche de
d’entrée cachée sortie

Figure.1 Perceptron multicouche

Le perceptron a plusieurs couches de la Figure 1 est identique a celle de la figure 2.7. Ce modele
est utilisé pour I’exemple de calcul. Cette architecture comprend 3 neurones dans la couche
d’entrée, 2 neurones dans la couche cachée et un neurone dans la couche de sortie. Les calculs qui

suivent sont inspirés et adaptés de [62].

On peut définir z =WTx + b et a = g(z) ou g(z) est une fonction d’activation quelconque,

section 2.3.2. W représente la matrice des parametres du réseau.

Pour des questions de clarification WY | avec les crochets représentent tout ce qui relié a la couche
| du réseau de neurones. Ainsi, W1 Représente la matrice de paramétres pour la couche 1 du

réseau de neurones. De méme, b le vecteur de biais associé a la couche 1 du réseau de neurones.
La passe avant peut étre définie comme suit :

La premiere couche va effectuer les transformations suivantes sur le vecteur d’entrée x :
L1 — il lil 4 plal 711 gl g R3xt, (8.1)
altl = g(z11) wil e R34, pll € R (8.2)

La seconde couche va effectuer les transformations suivantes :
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S121 — w2l gl 4 plzl 7121 g2 ¢ g2xt (8.3)

al?l = g(z1) w2l e R2x3 pl2] € R2*1 (8.4)
La derniére couche qui est la couche de sortie va effectuer les transformations suivantes :

7131 = wBBlgl2l 4 pl3] zBl B3l e r1x1 (8.5)
5;(1‘) = qB31 = g(z[3]) Wl e R1*2 pl3l ¢ R1x1 (8.6)

La prochaine étape de I’entrainement du réseau de neurones consiste a mettre a jour les parametres
en calculant la fonction colit. Pour cet exemple nous allons utiliser la fonction de cot

logarithmique :

L(@,y) = —[ylog®) + (1 —y)log(1l — )] (8.7)

La fonction de coiit L(¥, y) Que nous allons noter £ produit une seule valeur scalaire. Le calcul de
cette valeur permettra de mettre a jour tous les parametres dans chacune des couches [ du réseau

de neurones selon les équations suivantes :

oL (8.8)
] — l
W[] = W[ - am
oL (8.9)
pld = plll — am

ou a représente le taux d’apprentissage. Une fois la colt calculée, les gradients peuvent étre
obtenus par rapport aux paramétres que sont W, w2l w1 plil pl2l pl31 En utilisant les

équations précédentes, cela vient a calculer :

oL oL oL
ownl’ owzl’ ow 3]
(8.10)
oL oL L

b’ o’ FIEK
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La partie qui suit montre un exemple de gradient calculé par rapport aux paramétres W2l pour

I’algorithme de rétropropagation.

oL AL oL
or  |ow® aw® wD .
owll~ | oL oL oL (8.11)
2] 2] 2]
OW,," Wy, W,y

. . aL o .
Maintenant pour calculer, les termes de la matrice 5,y hous utilisons les régles de calcul de la

dérivation en chaine :

oL oL oL
21 ~ 99 Ayl2] (8.12)
ow;" 9V aw;
oL dal3l
= 3aF1 5 (8.13)
ij
oL dal3l 9213
~ 9al3l 9z[3] aWiE'Z] (8.14)

L dal3l 9213
~ 9al3l 9281 5y 2] (8.15)
ij

oL dal3l 9z131 gal2l gz[2]
~ 3aB1 92131 a2l 37121 Gy 2] (8.16)
ij

On remarque que :

0L 0all oL (8.17)
daldl 9z81 — 9z[3]

0z[3] 3 (8.18)
dalzl
dal?l (8.19)

5,0 = diag(g' (")



2
az[[ ]] _ a[l]ei
2 j
ow; ;
oL . . . .
et peut étre calculée selon la procédure suivante :

9z[3]

aL Kl
9281 9781 [—ylog(®) — (1 —y)log(1 — P)]
0
= PE [_yl0g0(2[3]) -1 - y)log (1 — O-(Z[B]))]
1
= —yma(z[ﬂ) (1 _ 0(2[3]))
1
-l =Y) /= [3] _ [3]
4 (1- o) (~Do(2) (1 - o(22)
= =y (1 - 0'(2[3])) + (1 _ y)o-(z[3])
= 0'(2[3]) -y
oL
dzI[3] = abl-y

Ainsi, le résultat suivant est obtenu :

oL
= (ql31 — Blo g'(£[21) glYe,
aWiEZ] = (a y)W g (Z )aj e;
aL
— (A[3] _ Bl o o' (5121} ,[1]
ow? (@Bl =y)whle g'(z2]) o
aL T
_ ' [1]
awlzl [(aB® = y)WBl o g'(2121) ]af

t

avec o qui représente le produit par ¢lément ou le produit Hadamard.
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(8.20)

(8.21)

(8.22)

(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)

(8.29)
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ANNEXE B COURBES D’APPRENTISSAGE DES HYPERPARAMETRES

On remarque que pour un taux d’apprentissage de le-01 le modele n’a pas convergé, Tableau 1.
La courbe de la précision de classification est constante pour I’ensemble de validation. Lorsque le
taux d’apprentissage a diminué a 1e-02 on a commencé a voir une convergence du modele. Le taux
de 1°-03 a permis d’avoir la meilleure courbe d’apprentissage. Lorsque le taux d’apprentissage a
continuer a diminuer, la précision de classification obtenu a la fin de I’entrainement a été basse. Le
taux d’apprentissage affecte alors la vitesse a laquelle le modele apprend a identifier les classes de

mouvement.

Pour le nombre de filtres, Tableau 2, on remarque qu’une augmentation du nombre de filtres de 9
a 32 a entrainé une augmentation de la précision de classification de 91.4% a 95.6%. Ce qui est
normal car les filtres ont pour but d’extraire I’information pertinente des signaux. Cependant, on
remarque qu’a partir de 32 filtres la précision de classification a diminué lorsqu’on a augment¢ le
nombre de filtres. En effet, un nombre de filtres trop élevé (nombre de caractéristiques) peut

introduire des caractéristiques qui portent a confusion I’algorithme de classification.

L’augmentation du nombre de neurones dans les couches LSTM, Tableau 3, a entrainé une
augmentation de la précision de classification. Cependant, cette augmentation (0.75%) est minime
compar¢ au nombre de paramétres a mettre a jour due a I’augmentation de 32 neurones a 128
neurones. En effet, il faut compter 199,104 paramétres supplémentaires. Il est préférable de garder
un nombre de neurones bas permettant d’avoir un bon résultat de classification avec le minimum

de parametres a entrainer.

En entrainant le mode¢le sans terme de régularisation, Tableau 4, on a obtenu une précision de
classification de 94.6%. Le terme de régularisation de 0.002 a obtenu le meilleur résultat de
classification. En augmentant ce terme les résultats de classification ont diminué. Mais il est quand
méme intéressant de noter la superposition des courbes de ’ensemble d’entrainement et de

validation, ce qui démontre la capacité de ce terme a maintenir une faible variance

La taille du lot a également affecté¢ la vitesse de convergence du réseau. Le réseau a convergé plus
rapidement avec une petite taille de lot, Tableau 5. En effet, des lots plus petits permettent de mette
a jour plus de fois les parametres du réseau comparé a un lot plus important. Cependant, un lot trop
petit ne permet pas au modele de voir suffisant d’exemples avant de pouvoir mettre a jour les

parameétres d’apprentissage.
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Tableau 2 Nombre de filtres
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Tableau 4 Terme de régularisation
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